Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -46,17 +46,6 @@ percentages_format = {'Exposure': '{:.2%}'}
|
|
46 |
@st.cache_data(ttl = 600)
|
47 |
def init_baselines():
|
48 |
sh = gcservice_account.open_by_url(MLB_Data)
|
49 |
-
collection = db["DK_MLB_seed_frame"]
|
50 |
-
cursor = collection.find()
|
51 |
-
|
52 |
-
raw_display = pd.DataFrame(list(cursor))
|
53 |
-
DK_seed = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'salary', 'proj']]
|
54 |
-
|
55 |
-
collection = db["FD_MLB_seed_frame"]
|
56 |
-
cursor = collection.find()
|
57 |
-
|
58 |
-
raw_display = pd.DataFrame(list(cursor))
|
59 |
-
FD_seed = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'salary', 'proj']]
|
60 |
|
61 |
worksheet = sh.worksheet('DK_Projections')
|
62 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
@@ -70,9 +59,29 @@ def init_baselines():
|
|
70 |
|
71 |
fd_raw = load_display.dropna(subset=['Median'])
|
72 |
|
73 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
|
77 |
tab1, tab2 = st.tabs(['Data Export', 'Contest Sims'])
|
78 |
with tab1:
|
@@ -82,7 +91,7 @@ with tab1:
|
|
82 |
st.cache_data.clear()
|
83 |
for key in st.session_state.keys():
|
84 |
del st.session_state[key]
|
85 |
-
|
86 |
|
87 |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
|
88 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
@@ -91,74 +100,73 @@ with tab1:
|
|
91 |
|
92 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
93 |
if team_var1 == 'Specific Teams':
|
94 |
-
team_var2 = st.multiselect('Which teams do you want?', options =
|
95 |
elif team_var1 == 'Full Slate':
|
96 |
-
team_var2 =
|
97 |
|
98 |
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
|
99 |
if stack_var1 == 'Specific Stack Sizes':
|
100 |
-
stack_var2 = st.multiselect('Which stack sizes do you want?', options =
|
101 |
elif stack_var1 == 'Full Slate':
|
102 |
-
stack_var2 =
|
103 |
|
104 |
elif site_var1 == 'Fanduel':
|
105 |
raw_baselines = fd_raw
|
106 |
|
107 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
108 |
if team_var1 == 'Specific Teams':
|
109 |
-
team_var2 = st.multiselect('Which teams do you want?', options =
|
110 |
elif team_var1 == 'Full Slate':
|
111 |
-
team_var2 =
|
112 |
|
113 |
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
|
114 |
if stack_var1 == 'Specific Stack Sizes':
|
115 |
-
stack_var2 = st.multiselect('Which stack sizes do you want?', options =
|
116 |
elif stack_var1 == 'Full Slate':
|
117 |
-
stack_var2 =
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
with col2:
|
124 |
-
if
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
162 |
|
163 |
with tab2:
|
164 |
col1, col2 = st.columns([1, 7])
|
|
|
46 |
@st.cache_data(ttl = 600)
|
47 |
def init_baselines():
|
48 |
sh = gcservice_account.open_by_url(MLB_Data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
worksheet = sh.worksheet('DK_Projections')
|
51 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
|
|
59 |
|
60 |
fd_raw = load_display.dropna(subset=['Median'])
|
61 |
|
62 |
+
return dk_raw, fd_raw
|
63 |
+
|
64 |
+
@st.cache_data(ttl = 600)
|
65 |
+
def init_DK_seed_frame():
|
66 |
+
collection = db["DK_MLB_seed_frame"]
|
67 |
+
cursor = collection.find()
|
68 |
+
|
69 |
+
raw_display = pd.DataFrame(list(cursor))
|
70 |
+
DK_seed = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'salary', 'proj']]
|
71 |
+
|
72 |
+
return DK_seed
|
73 |
+
|
74 |
+
@st.cache_data(ttl = 600)
|
75 |
+
def init_FD_seed_frame():
|
76 |
+
collection = db["FD_MLB_seed_frame"]
|
77 |
+
cursor = collection.find()
|
78 |
+
|
79 |
+
raw_display = pd.DataFrame(list(cursor))
|
80 |
+
FD_seed = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'salary', 'proj']]
|
81 |
+
|
82 |
+
return FD_seed
|
83 |
|
84 |
+
dk_raw, fd_raw = init_baselines()
|
85 |
|
86 |
tab1, tab2 = st.tabs(['Data Export', 'Contest Sims'])
|
87 |
with tab1:
|
|
|
91 |
st.cache_data.clear()
|
92 |
for key in st.session_state.keys():
|
93 |
del st.session_state[key]
|
94 |
+
dk_raw, fd_raw = init_baselines()
|
95 |
|
96 |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
|
97 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
|
|
100 |
|
101 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
102 |
if team_var1 == 'Specific Teams':
|
103 |
+
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
|
104 |
elif team_var1 == 'Full Slate':
|
105 |
+
team_var2 = dk_raw.Team.values.tolist()
|
106 |
|
107 |
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
|
108 |
if stack_var1 == 'Specific Stack Sizes':
|
109 |
+
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
|
110 |
elif stack_var1 == 'Full Slate':
|
111 |
+
stack_var2 = [5, 4, 3, 2, 1, 0]
|
112 |
|
113 |
elif site_var1 == 'Fanduel':
|
114 |
raw_baselines = fd_raw
|
115 |
|
116 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
117 |
if team_var1 == 'Specific Teams':
|
118 |
+
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
|
119 |
elif team_var1 == 'Full Slate':
|
120 |
+
team_var2 = fd_raw.Team.values.tolist()
|
121 |
|
122 |
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
|
123 |
if stack_var1 == 'Specific Stack Sizes':
|
124 |
+
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [4, 3, 2, 1, 0])
|
125 |
elif stack_var1 == 'Full Slate':
|
126 |
+
stack_var2 = [4, 3, 2, 1, 0]
|
127 |
|
|
|
|
|
|
|
|
|
128 |
with col2:
|
129 |
+
if st.button("Load Seed Frame", key='seed_frame_load'):
|
130 |
+
if site_var1 == 'Draftkings':
|
131 |
+
DK_seed = init_DK_seed_frame()
|
132 |
+
DK_seed_parse = DK_seed[DK_seed['Team'].isin(team_var2)]
|
133 |
+
DK_seed_parse = DK_seed_parse[DK_seed_parse['Team_count'].isin(stack_var2)]
|
134 |
+
st.session_state.data_export_display = DK_seed_parse.head(1000)
|
135 |
+
st.session_state.data_export = DK_seed_parse
|
136 |
+
st.session_state.data_export_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.data_export.iloc[:,0:9].values, return_counts=True)),
|
137 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
138 |
+
st.session_state.data_export_freq['Freq'] = st.session_state.data_export_freq['Freq'].astype(int)
|
139 |
+
st.session_state.data_export_freq['Exposure'] = st.session_state.data_export_freq['Freq']/(len(DK_seed_parse['Team']))
|
140 |
+
|
141 |
+
if 'data_export' in st.session_state:
|
142 |
+
st.download_button(
|
143 |
+
label="Export optimals set",
|
144 |
+
data=st.session_state.data_export.to_csv().encode('utf-8'),
|
145 |
+
file_name='MLB_optimals_export.csv',
|
146 |
+
mime='text/csv',
|
147 |
+
)
|
148 |
+
st.dataframe(st.session_state.data_export_display.style.format(precision=2), height=500, use_container_width=True)
|
149 |
+
st.dataframe(st.session_state.data_export_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
|
150 |
+
elif site_var1 == 'Fanduel':
|
151 |
+
FD_seed = init_DK_seed_frame()
|
152 |
+
FD_seed_parse = FD_seed[FD_seed['Team'].isin(team_var2)]
|
153 |
+
FD_seed_parse = FD_seed_parse[FD_seed_parse['Team_count'].isin(stack_var2)]
|
154 |
+
st.session_state.data_export_display = FD_seed_parse.head(1000)
|
155 |
+
st.session_state.data_export = FD_seed_parse
|
156 |
+
st.session_state.data_export_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.data_export.iloc[:,0:8].values, return_counts=True)),
|
157 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
158 |
+
st.session_state.data_export_freq['Freq'] = st.session_state.data_export_freq['Freq'].astype(int)
|
159 |
+
st.session_state.data_export_freq['Exposure'] = st.session_state.data_export_freq['Freq']/(len(FD_seed_parse['Team']))
|
160 |
+
|
161 |
+
if 'data_export' in st.session_state:
|
162 |
+
st.download_button(
|
163 |
+
label="Export optimals set",
|
164 |
+
data=st.session_state.data_export.to_csv().encode('utf-8'),
|
165 |
+
file_name='MLB_optimals_export.csv',
|
166 |
+
mime='text/csv',
|
167 |
+
)
|
168 |
+
st.dataframe(st.session_state.data_export_display.style.format(precision=2), height=500, use_container_width=True)
|
169 |
+
st.dataframe(st.session_state.data_export_freq.style.format(percentages_format, precision=2), height=500, use_container_width=True)
|
170 |
|
171 |
with tab2:
|
172 |
col1, col2 = st.columns([1, 7])
|