Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -184,7 +184,6 @@ with tab1:
|
|
184 |
elif stack_var1 == 'Full Slate':
|
185 |
stack_var2 = [4, 3, 2, 1, 0]
|
186 |
|
187 |
-
|
188 |
if st.button("Prepare data export", key='data_export'):
|
189 |
data_export = st.session_state.working_seed.copy()
|
190 |
st.download_button(
|
@@ -193,7 +192,6 @@ with tab1:
|
|
193 |
file_name='MLB_optimals_export.csv',
|
194 |
mime='text/csv',
|
195 |
)
|
196 |
-
st.write(st.session_state)
|
197 |
|
198 |
with col2:
|
199 |
if st.button("Load Data", key='load_data'):
|
@@ -221,12 +219,7 @@ with tab1:
|
|
221 |
|
222 |
with st.container():
|
223 |
if 'data_export_display' in st.session_state:
|
224 |
-
|
225 |
-
st.table(st.session_state.data_export_display)
|
226 |
-
except:
|
227 |
-
st.write("resources low, waiting 5 seconds and trying again")
|
228 |
-
time.sleep(5)
|
229 |
-
st.table(st.session_state.data_export_display)
|
230 |
|
231 |
with tab2:
|
232 |
col1, col2 = st.columns([1, 7])
|
@@ -310,52 +303,6 @@ with tab2:
|
|
310 |
# Data Copying
|
311 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
312 |
|
313 |
-
if sim_site_var1 == 'Draftkings':
|
314 |
-
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:10].values, return_counts=True)),
|
315 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
316 |
-
elif sim_site_var1 == 'Fanduel':
|
317 |
-
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:9].values, return_counts=True)),
|
318 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
319 |
-
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
320 |
-
st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(maps_dict['Pos_map'])
|
321 |
-
st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(maps_dict['Salary_map'])
|
322 |
-
st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(maps_dict['Own_map']) / 100
|
323 |
-
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(1000)
|
324 |
-
st.session_state.player_freq['Edge'] = st.session_state.player_freq['Exposure'] - st.session_state.player_freq['Proj Own']
|
325 |
-
st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(maps_dict['Team_map'])
|
326 |
-
|
327 |
-
if sim_site_var1 == 'Draftkings':
|
328 |
-
st.session_state.sp_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:2].values, return_counts=True)),
|
329 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
330 |
-
elif sim_site_var1 == 'Fanduel':
|
331 |
-
st.session_state.sp_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:1].values, return_counts=True)),
|
332 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
333 |
-
st.session_state.sp_freq['Freq'] = st.session_state.sp_freq['Freq'].astype(int)
|
334 |
-
st.session_state.sp_freq['Position'] = st.session_state.sp_freq['Player'].map(maps_dict['Pos_map'])
|
335 |
-
st.session_state.sp_freq['Salary'] = st.session_state.sp_freq['Player'].map(maps_dict['Salary_map'])
|
336 |
-
st.session_state.sp_freq['Proj Own'] = st.session_state.sp_freq['Player'].map(maps_dict['Own_map']) / 100
|
337 |
-
st.session_state.sp_freq['Exposure'] = st.session_state.sp_freq['Freq']/(1000)
|
338 |
-
st.session_state.sp_freq['Edge'] = st.session_state.sp_freq['Exposure'] - st.session_state.sp_freq['Proj Own']
|
339 |
-
st.session_state.sp_freq['Team'] = st.session_state.sp_freq['Player'].map(maps_dict['Team_map'])
|
340 |
-
|
341 |
-
if sim_site_var1 == 'Draftkings':
|
342 |
-
st.session_state.team_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,12:13].values, return_counts=True)),
|
343 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
344 |
-
elif sim_site_var1 == 'Fanduel':
|
345 |
-
st.session_state.team_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,11:12].values, return_counts=True)),
|
346 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
347 |
-
st.session_state.team_freq['Freq'] = st.session_state.team_freq['Freq'].astype(int)
|
348 |
-
st.session_state.team_freq['Exposure'] = st.session_state.team_freq['Freq']/(1000)
|
349 |
-
|
350 |
-
if sim_site_var1 == 'Draftkings':
|
351 |
-
st.session_state.stack_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,13:14].values, return_counts=True)),
|
352 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
353 |
-
elif sim_site_var1 == 'Fanduel':
|
354 |
-
st.session_state.stack_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,12:13].values, return_counts=True)),
|
355 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
356 |
-
st.session_state.stack_freq['Freq'] = st.session_state.stack_freq['Freq'].astype(int)
|
357 |
-
st.session_state.stack_freq['Exposure'] = st.session_state.stack_freq['Freq']/(1000)
|
358 |
-
|
359 |
else:
|
360 |
if sim_site_var1 == 'Draftkings':
|
361 |
st.session_state.working_seed = DK_seed.copy()
|
@@ -399,56 +346,74 @@ with tab2:
|
|
399 |
# Data Copying
|
400 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
401 |
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
if sim_site_var1 == 'Draftkings':
|
440 |
-
st.session_state.stack_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,13:14].values, return_counts=True)),
|
441 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
442 |
-
elif sim_site_var1 == 'Fanduel':
|
443 |
-
st.session_state.stack_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,12:13].values, return_counts=True)),
|
444 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
445 |
-
st.session_state.stack_freq['Freq'] = st.session_state.stack_freq['Freq'].astype(int)
|
446 |
-
st.session_state.stack_freq['Exposure'] = st.session_state.stack_freq['Freq']/(1000)
|
447 |
|
448 |
-
|
449 |
-
|
450 |
-
|
|
|
|
|
|
|
|
|
|
|
451 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
with st.container():
|
453 |
tab1, tab2, tab3, tab4 = st.tabs(['Overall Exposures', 'SP Exposures', 'Team Exposures', 'Stack Size Exposures'])
|
454 |
with tab1:
|
|
|
184 |
elif stack_var1 == 'Full Slate':
|
185 |
stack_var2 = [4, 3, 2, 1, 0]
|
186 |
|
|
|
187 |
if st.button("Prepare data export", key='data_export'):
|
188 |
data_export = st.session_state.working_seed.copy()
|
189 |
st.download_button(
|
|
|
192 |
file_name='MLB_optimals_export.csv',
|
193 |
mime='text/csv',
|
194 |
)
|
|
|
195 |
|
196 |
with col2:
|
197 |
if st.button("Load Data", key='load_data'):
|
|
|
219 |
|
220 |
with st.container():
|
221 |
if 'data_export_display' in st.session_state:
|
222 |
+
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
with tab2:
|
225 |
col1, col2 = st.columns([1, 7])
|
|
|
303 |
# Data Copying
|
304 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
else:
|
307 |
if sim_site_var1 == 'Draftkings':
|
308 |
st.session_state.working_seed = DK_seed.copy()
|
|
|
346 |
# Data Copying
|
347 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
348 |
|
349 |
+
if sim_site_var1 == 'Draftkings':
|
350 |
+
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:10].values, return_counts=True)),
|
351 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
352 |
+
elif sim_site_var1 == 'Fanduel':
|
353 |
+
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:9].values, return_counts=True)),
|
354 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
355 |
+
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
356 |
+
st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(maps_dict['Pos_map'])
|
357 |
+
st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(maps_dict['Salary_map'])
|
358 |
+
st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(maps_dict['Own_map']) / 100
|
359 |
+
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(1000)
|
360 |
+
st.session_state.player_freq['Edge'] = st.session_state.player_freq['Exposure'] - st.session_state.player_freq['Proj Own']
|
361 |
+
st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(maps_dict['Team_map'])
|
362 |
|
363 |
+
if sim_site_var1 == 'Draftkings':
|
364 |
+
st.session_state.sp_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:2].values, return_counts=True)),
|
365 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
366 |
+
elif sim_site_var1 == 'Fanduel':
|
367 |
+
st.session_state.sp_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:1].values, return_counts=True)),
|
368 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
369 |
+
st.session_state.sp_freq['Freq'] = st.session_state.sp_freq['Freq'].astype(int)
|
370 |
+
st.session_state.sp_freq['Position'] = st.session_state.sp_freq['Player'].map(maps_dict['Pos_map'])
|
371 |
+
st.session_state.sp_freq['Salary'] = st.session_state.sp_freq['Player'].map(maps_dict['Salary_map'])
|
372 |
+
st.session_state.sp_freq['Proj Own'] = st.session_state.sp_freq['Player'].map(maps_dict['Own_map']) / 100
|
373 |
+
st.session_state.sp_freq['Exposure'] = st.session_state.sp_freq['Freq']/(1000)
|
374 |
+
st.session_state.sp_freq['Edge'] = st.session_state.sp_freq['Exposure'] - st.session_state.sp_freq['Proj Own']
|
375 |
+
st.session_state.sp_freq['Team'] = st.session_state.sp_freq['Player'].map(maps_dict['Team_map'])
|
376 |
|
377 |
+
if sim_site_var1 == 'Draftkings':
|
378 |
+
st.session_state.team_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,12:13].values, return_counts=True)),
|
379 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
380 |
+
elif sim_site_var1 == 'Fanduel':
|
381 |
+
st.session_state.team_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,11:12].values, return_counts=True)),
|
382 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
383 |
+
st.session_state.team_freq['Freq'] = st.session_state.team_freq['Freq'].astype(int)
|
384 |
+
st.session_state.team_freq['Exposure'] = st.session_state.team_freq['Freq']/(1000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
|
386 |
+
if sim_site_var1 == 'Draftkings':
|
387 |
+
st.session_state.stack_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,13:14].values, return_counts=True)),
|
388 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
389 |
+
elif sim_site_var1 == 'Fanduel':
|
390 |
+
st.session_state.stack_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,12:13].values, return_counts=True)),
|
391 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
392 |
+
st.session_state.stack_freq['Freq'] = st.session_state.stack_freq['Freq'].astype(int)
|
393 |
+
st.session_state.stack_freq['Exposure'] = st.session_state.stack_freq['Freq']/(1000)
|
394 |
|
395 |
+
with st.container():
|
396 |
+
if 'player_freq' in st.session_state:
|
397 |
+
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
|
398 |
+
if player_split_var2 == 'Specific Players':
|
399 |
+
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
|
400 |
+
elif player_split_var2 == 'Full Players':
|
401 |
+
find_var2 = st.session_state.player_freq.Player.values.tolist()
|
402 |
+
|
403 |
+
if player_split_var2 == 'Specific Players':
|
404 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
|
405 |
+
if player_split_var2 == 'Full Players':
|
406 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
|
407 |
+
if 'Sim_Winner_Display' in st.session_state:
|
408 |
+
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
|
409 |
+
if 'Sim_Winner_Export' in st.session_state:
|
410 |
+
st.download_button(
|
411 |
+
label="Export Full Frame",
|
412 |
+
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
413 |
+
file_name='MLB_consim_export.csv',
|
414 |
+
mime='text/csv',
|
415 |
+
)
|
416 |
+
|
417 |
with st.container():
|
418 |
tab1, tab2, tab3, tab4 = st.tabs(['Overall Exposures', 'SP Exposures', 'Team Exposures', 'Stack Size Exposures'])
|
419 |
with tab1:
|