Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -117,15 +117,17 @@ def convert_df_to_csv(df):
|
|
117 |
|
118 |
t_stamp = load_time()
|
119 |
site_slates = set_slate_teams()
|
120 |
-
col1, col2 = st.columns([
|
121 |
|
|
|
|
|
|
|
|
|
122 |
with col1:
|
123 |
-
#st.info(t_stamp)
|
124 |
-
if st.button("Load/Reset Data", key='reset3'):
|
125 |
-
t_stamp = load_time()
|
126 |
-
st.cache_data.clear()
|
127 |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'All Games'), key='slate_var1')
|
|
|
128 |
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
|
|
|
129 |
custom_var1 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var1')
|
130 |
if custom_var1 == 'No':
|
131 |
if slate_var1 == 'Main Slate':
|
@@ -194,179 +196,181 @@ with col1:
|
|
194 |
slate_teams = site_slates['FD Overall'].values.tolist()
|
195 |
raw_baselines = load_fd_player_projections(all_fd_player_projections)
|
196 |
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
salary_file=salary_file
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
overall_file=
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
players_only
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
st.
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
|
|
|
|
|
117 |
|
118 |
t_stamp = load_time()
|
119 |
site_slates = set_slate_teams()
|
120 |
+
col1, col2, col3, col4, col5 = st.columns([2, 2, 2, 2, 2])
|
121 |
|
122 |
+
#st.info(t_stamp)
|
123 |
+
if st.button("Load/Reset Data", key='reset3'):
|
124 |
+
t_stamp = load_time()
|
125 |
+
st.cache_data.clear()
|
126 |
with col1:
|
|
|
|
|
|
|
|
|
127 |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'All Games'), key='slate_var1')
|
128 |
+
with col2:
|
129 |
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
|
130 |
+
with col3:
|
131 |
custom_var1 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var1')
|
132 |
if custom_var1 == 'No':
|
133 |
if slate_var1 == 'Main Slate':
|
|
|
196 |
slate_teams = site_slates['FD Overall'].values.tolist()
|
197 |
raw_baselines = load_fd_player_projections(all_fd_player_projections)
|
198 |
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
199 |
+
with col4:
|
200 |
+
split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
|
201 |
+
if split_var1 == 'Specific Games':
|
202 |
+
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1')
|
203 |
+
elif split_var1 == 'Full Slate Run':
|
204 |
+
team_var1 = raw_baselines.Team.values.tolist()
|
205 |
+
with col5:
|
206 |
+
pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
|
207 |
+
if pos_split1 == 'Specific Positions':
|
208 |
+
pos_var1 = st.multiselect('What Positions would you like to view?', options = ['SP', 'P', 'C', '1B', '2B', '3B', 'SS', 'OF'])
|
209 |
+
elif pos_split1 == 'All Positions':
|
210 |
+
pos_var1 = 'All'
|
211 |
+
|
212 |
+
|
213 |
+
|
214 |
+
if custom_var1 == 'No':
|
215 |
+
if slate_var1 == 'Main Slate':
|
216 |
+
if site_var1 == 'Draftkings':
|
217 |
+
final_Proj = load_dk_player_roo(dk_player_projections)
|
218 |
+
elif site_var1 == 'Fanduel':
|
219 |
+
final_Proj = load_fd_player_roo(fd_player_projections)
|
220 |
+
elif slate_var1 == 'Secondary Slate':
|
221 |
+
if site_var1 == 'Draftkings':
|
222 |
+
final_Proj = load_dk_player_roo(secondary_dk_player_projections)
|
223 |
+
elif site_var1 == 'Fanduel':
|
224 |
+
final_Proj = load_fd_player_roo(secondary_fd_player_projections)
|
225 |
+
elif slate_var1 == 'All Games':
|
226 |
+
if site_var1 == 'Draftkings':
|
227 |
+
final_Proj = load_dk_player_roo(all_dk_player_projections)
|
228 |
+
elif site_var1 == 'Fanduel':
|
229 |
+
final_Proj = load_fd_player_roo(all_fd_player_projections)
|
230 |
+
final_Proj = final_Proj[final_Proj['Team'].isin(team_var1)]
|
231 |
+
if pos_var1 != 'All':
|
232 |
+
final_Proj = final_Proj[final_Proj['Position'].str.contains('|'.join(pos_var1))]
|
233 |
+
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
234 |
+
st.download_button(
|
235 |
+
label="Export Tables",
|
236 |
+
data=convert_df_to_csv(final_Proj),
|
237 |
+
file_name='Custom_MLB_export.csv',
|
238 |
+
mime='text/csv',
|
239 |
+
)
|
240 |
+
elif custom_var1 == 'Yes':
|
241 |
+
hold_container = st.empty()
|
242 |
+
if st.button('Create Range of Outcomes for Slate'):
|
243 |
+
with hold_container:
|
244 |
+
# if slate_var1 == 'Main Slate':
|
245 |
+
# if site_var1 == 'Draftkings':
|
246 |
+
# raw_baselines = load_dk_player_projections(dk_player_projections)
|
247 |
+
# elif site_var1 == 'Fanduel':
|
248 |
+
# raw_baselines = load_fd_player_projections(fd_player_projections)
|
249 |
+
# elif slate_var1 == 'Secondary Slate':
|
250 |
+
# if site_var1 == 'Draftkings':
|
251 |
+
# raw_baselines = load_dk_player_projections(secondary_dk_player_projections)
|
252 |
+
# elif site_var1 == 'Fanduel':
|
253 |
+
# raw_baselines = load_fd_player_projections(secondary_fd_player_projections)
|
254 |
+
# elif slate_var1 == 'All Games':
|
255 |
+
# if site_var1 == 'Draftkings':
|
256 |
+
# raw_baselines = load_dk_player_projections(all_dk_player_projections)
|
257 |
+
# elif site_var1 == 'Fanduel':
|
258 |
+
# raw_baselines = load_fd_player_projections(all_fd_player_projections)
|
259 |
+
working_roo = raw_baselines
|
260 |
+
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
|
261 |
+
own_dict = dict(zip(working_roo.Player, working_roo.Own))
|
262 |
+
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
263 |
+
total_sims = 1000
|
264 |
+
|
265 |
+
flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Ceiling_Var']]
|
266 |
+
flex_file['Floor'] = flex_file['Median']*.25
|
267 |
+
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'SP', (flex_file['Median'] + (flex_file['Floor'])) + ((flex_file['Ceiling_Var'] * 10) * 3), (flex_file['Median'] + (flex_file['Floor'])) + ((flex_file['Ceiling_Var'] * 10)))
|
268 |
+
flex_file['STD'] = (flex_file['Median']/4)
|
269 |
+
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
270 |
+
if pos_split1 == 'All Positions':
|
271 |
+
flex_file = flex_file
|
272 |
+
elif pos_split1 != 'All Positions':
|
273 |
+
if pos_var1 == 'Pitchers':
|
274 |
+
flex_file = flex_file[flex_file['Position'] == 'SP']
|
275 |
+
elif pos_var1 == 'Hitters':
|
276 |
+
flex_file = flex_file[flex_file['Position'] != 'SP']
|
277 |
+
elif pos_var1 not in ['Pitchers', 'Hitters']:
|
278 |
+
flex_file = flex_file[flex_file['Position'].str.contains('|'.join(pos_var1))]
|
279 |
+
hold_file = flex_file
|
280 |
+
overall_file = flex_file
|
281 |
+
salary_file = flex_file
|
282 |
+
|
283 |
+
overall_players = overall_file[['Player']]
|
284 |
+
|
285 |
+
for x in range(0,total_sims):
|
286 |
+
salary_file[x] = salary_file['Salary']
|
287 |
+
|
288 |
+
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
289 |
+
salary_file.astype('int').dtypes
|
290 |
+
|
291 |
+
salary_file = salary_file.div(1000)
|
292 |
+
|
293 |
+
for x in range(0,total_sims):
|
294 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
295 |
+
|
296 |
+
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
297 |
+
overall_file.astype('int').dtypes
|
298 |
+
|
299 |
+
players_only = hold_file[['Player']]
|
300 |
+
raw_lineups_file = players_only
|
301 |
+
|
302 |
+
for x in range(0,total_sims):
|
303 |
+
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
304 |
+
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
305 |
+
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
306 |
+
|
307 |
+
players_only=players_only.drop(['Player'], axis=1)
|
308 |
+
players_only.astype('int').dtypes
|
309 |
+
|
310 |
+
salary_2x_check = (overall_file - (salary_file*2))
|
311 |
+
salary_3x_check = (overall_file - (salary_file*3))
|
312 |
+
salary_4x_check = (overall_file - (salary_file*4))
|
313 |
+
gpp_check = (overall_file - ((salary_file*2)+10))
|
314 |
+
|
315 |
+
players_only['Average_Rank'] = players_only.mean(axis=1)
|
316 |
+
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
317 |
+
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
318 |
+
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
319 |
+
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
320 |
+
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
321 |
+
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
322 |
+
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
323 |
+
players_only['GPP%'] = gpp_check[gpp_check >= 1].count(axis=1)/float(total_sims)
|
324 |
+
|
325 |
+
players_only['Player'] = hold_file[['Player']]
|
326 |
+
|
327 |
+
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%']]
|
328 |
+
|
329 |
+
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
330 |
+
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%']]
|
331 |
+
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
332 |
+
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
333 |
+
final_Proj['Own'] = final_Proj['Own'].astype('float')
|
334 |
+
if contest_var1 == 'Small Field GPP':
|
335 |
+
if site_var1 == 'Draftkings':
|
336 |
+
final_Proj['Own%'] = np.where((final_Proj['Position'] == 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean(), final_Proj['Own'])
|
337 |
+
final_Proj['Own%'] = np.where((final_Proj['Position'] != 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (10 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean(), final_Proj['Own%'])
|
338 |
+
final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
|
339 |
+
elif site_var1 == 'Fanduel':
|
340 |
+
final_Proj['Own%'] = np.where((final_Proj['Position'] == 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean(), final_Proj['Own'])
|
341 |
+
final_Proj['Own%'] = np.where((final_Proj['Position'] != 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (10 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean())/150) + final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean(), final_Proj['Own%'])
|
342 |
+
final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
|
343 |
+
elif contest_var1 == 'Large Field GPP':
|
344 |
+
if site_var1 == 'Draftkings':
|
345 |
+
final_Proj['Own%'] = np.where((final_Proj['Position'] == 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (2.5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean(), final_Proj['Own'])
|
346 |
+
final_Proj['Own%'] = np.where((final_Proj['Position'] != 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean(), final_Proj['Own%'])
|
347 |
+
final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
|
348 |
+
elif site_var1 == 'Fanduel':
|
349 |
+
final_Proj['Own%'] = np.where((final_Proj['Position'] == 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (2.5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean(), final_Proj['Own'])
|
350 |
+
final_Proj['Own%'] = np.where((final_Proj['Position'] != 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean())/150) + final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean(), final_Proj['Own%'])
|
351 |
+
final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
|
352 |
+
elif contest_var1 == 'Cash':
|
353 |
+
if site_var1 == 'Draftkings':
|
354 |
+
final_Proj['Own%'] = np.where((final_Proj['Position'] == 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (6 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean(), final_Proj['Own'])
|
355 |
+
final_Proj['Own%'] = np.where((final_Proj['Position'] != 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (11 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean(), final_Proj['Own%'])
|
356 |
+
final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
|
357 |
+
elif site_var1 == 'Fanduel':
|
358 |
+
final_Proj['Own%'] = np.where((final_Proj['Position'] == 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (6 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean(), final_Proj['Own'])
|
359 |
+
final_Proj['Own%'] = np.where((final_Proj['Position'] != 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (11 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean())/150) + final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean(), final_Proj['Own%'])
|
360 |
+
final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
|
361 |
+
|
362 |
+
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%', 'Own%']]
|
363 |
+
final_Proj = final_Proj.set_index('Player')
|
364 |
+
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
365 |
+
|
366 |
+
with hold_container:
|
367 |
+
hold_container = st.empty()
|
368 |
+
final_Proj = final_Proj
|
369 |
+
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
370 |
+
|
371 |
+
st.download_button(
|
372 |
+
label="Export Tables",
|
373 |
+
data=convert_df_to_csv(final_Proj),
|
374 |
+
file_name='Custom_MLB_export.csv',
|
375 |
+
mime='text/csv',
|
376 |
+
)
|