Multichem commited on
Commit
3293039
·
verified ·
1 Parent(s): 901f19a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +736 -0
app.py ADDED
@@ -0,0 +1,736 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ st.set_page_config(layout="wide")
3
+
4
+ for name in dir():
5
+ if not name.startswith('_'):
6
+ del globals()[name]
7
+
8
+ import numpy as np
9
+ import pandas as pd
10
+ import streamlit as st
11
+ import gspread
12
+ import gc
13
+ import plotly.express as px
14
+ import plotly.io as pio
15
+ import pymongo
16
+ import certifi
17
+ ca = certifi.where()
18
+
19
+ @st.cache_resource
20
+ def init_conn():
21
+ scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
22
+
23
+ credentials = {
24
+ "type": "service_account",
25
+ "project_id": "model-sheets-connect",
26
+ "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
27
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
28
+ "client_email": "[email protected]",
29
+ "client_id": "100369174533302798535",
30
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
31
+ "token_uri": "https://oauth2.googleapis.com/token",
32
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
33
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
34
+ }
35
+
36
+ client = pymongo.MongoClient("mongodb+srv://multichem:[email protected]/testing_db")
37
+ db = client["testing_db"]
38
+
39
+ gc_con = gspread.service_account_from_dict(credentials, scope)
40
+
41
+ return gc_con, client, db
42
+
43
+ gcservice_account, client, db = init_conn()
44
+
45
+ NBA_Data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
46
+
47
+ percentages_format = {'PG': '{:.2%}', 'SG': '{:.2%}', 'SF': '{:.2%}', 'PF': '{:.2%}', 'C': '{:.2%}'}
48
+
49
+ @st.cache_resource(ttl = 599)
50
+ def init_baselines():
51
+ sh = gcservice_account.open_by_url(NBA_Data)
52
+ collection = db["gamelog"]
53
+ cursor = collection.find() # Finds all documents in the collection
54
+
55
+ raw_display = pd.DataFrame(list(cursor))
56
+ gamelog_table = raw_display[raw_display['PLAYER_NAME'] != ""]
57
+ gamelog_table = gamelog_table[['PLAYER_NAME', 'POS', 'GAME_ID', 'TEAM_NAME', 'OPP_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP', 'MIN', 'touches', 'PTS', 'FGM', 'FGA', 'FG_PCT', 'FG3M', 'FG3A',
58
+ 'FG3_PCT', 'FTM', 'FTA', 'FT_PCT', 'reboundChancesOffensive', 'OREB', 'reboundChancesDefensive', 'DREB', 'reboundChancesTotal', 'REB',
59
+ 'passes', 'secondaryAssists', 'freeThrowAssists', 'assists', 'STL', 'BLK', 'TOV', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', 'FPPM']]
60
+ gamelog_table['assists'].replace("", 0, inplace=True)
61
+ gamelog_table['reboundChancesTotal'].replace("", 0, inplace=True)
62
+ gamelog_table['passes'].replace("", 0, inplace=True)
63
+ gamelog_table['touches'].replace("", 0, inplace=True)
64
+ gamelog_table['MIN'].replace("", 0, inplace=True)
65
+ gamelog_table['Fantasy'].replace("", 0, inplace=True)
66
+ gamelog_table['FD_Fantasy'].replace("", 0, inplace=True)
67
+ gamelog_table['FPPM'].replace("", 0, inplace=True)
68
+ gamelog_table['REB'] = gamelog_table['REB'].astype(int)
69
+ gamelog_table['assists'] = gamelog_table['assists'].astype(int)
70
+ gamelog_table['reboundChancesTotal'] = gamelog_table['reboundChancesTotal'].astype(int)
71
+ gamelog_table['passes'] = gamelog_table['passes'].astype(int)
72
+ gamelog_table['touches'] = gamelog_table['touches'].astype(int)
73
+ gamelog_table['MIN'] = gamelog_table['MIN'].astype(int)
74
+ gamelog_table['Fantasy'] = gamelog_table['Fantasy'].astype(float)
75
+ gamelog_table['FD_Fantasy'] = gamelog_table['FD_Fantasy'].astype(float)
76
+ gamelog_table['FPPM'] = gamelog_table['FPPM'].astype(float)
77
+ gamelog_table['rebound%'] = gamelog_table['REB'] / gamelog_table['reboundChancesTotal']
78
+ gamelog_table['assists_per_pass'] = gamelog_table['assists'] / gamelog_table['passes']
79
+ gamelog_table['Touch_per_min'] = gamelog_table['touches'] / gamelog_table['MIN']
80
+ gamelog_table['Fantasy_per_touch'] = gamelog_table['Fantasy'] / gamelog_table['touches']
81
+ gamelog_table['FD_Fantasy_per_touch'] = gamelog_table['FD_Fantasy'] / gamelog_table['touches']
82
+ data_cols = gamelog_table.columns.drop(['PLAYER_NAME', 'POS', 'TEAM_NAME', 'OPP_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP'])
83
+ gamelog_table[data_cols] = gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
84
+ gamelog_table['team_score'] = gamelog_table.groupby(['TEAM_NAME', 'GAME_ID'], sort=False)['PTS'].transform('sum')
85
+ gamelog_table['opp_score'] = gamelog_table.groupby(['GAME_ID'], sort=False)['PTS'].transform('sum') - gamelog_table['team_score']
86
+ gamelog_table['spread'] = (gamelog_table['opp_score'] - gamelog_table['team_score']).abs()
87
+ gamelog_table['GAME_DATE'] = pd.to_datetime(gamelog_table['GAME_DATE']).dt.date
88
+
89
+ spread_dict = dict(zip(gamelog_table['GAME_ID'], gamelog_table['spread']))
90
+
91
+ gamelog_table = gamelog_table.set_axis(['Player', 'Pos', 'game_id', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
92
+ 'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
93
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', 'FPPM',
94
+ 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch', 'team_score', 'opp_score', 'spread'], axis=1)
95
+
96
+ worksheet = sh.worksheet('Rotations')
97
+ raw_display = pd.DataFrame(worksheet.get_values())
98
+ raw_display.columns = raw_display.iloc[0]
99
+ raw_display = raw_display[1:]
100
+ raw_display = raw_display.reset_index(drop=True)
101
+ rot_table = raw_display[raw_display['Player'] != ""]
102
+ rot_table = rot_table[['Player', 'Team', 'PG', 'SG', 'SF', 'PF', 'C', 'Given Pos']]
103
+ data_cols = ['PG', 'SG', 'SF', 'PF', 'C']
104
+ rot_table[data_cols] = rot_table[data_cols].apply(pd.to_numeric, errors='coerce')
105
+ rot_table = rot_table[rot_table['Player'] != 0]
106
+
107
+ collection = db["rotations"]
108
+ cursor = collection.find() # Finds all documents in the collection
109
+
110
+ raw_display = pd.DataFrame(list(cursor))
111
+ game_rot = raw_display[raw_display['PLAYER_NAME'] != ""]
112
+ data_cols = game_rot.columns.drop(['PLAYER_NAME', 'POS', 'TEAM_ABBREVIATION', 'OPP_ABBREVIATION', 'TEAM_NAME', 'OPP_NAME', 'GAME_DATE',
113
+ 'MATCHUP', 'WL', 'backlog_lookup', 'Task', 'game_players'])
114
+ game_rot[data_cols] = game_rot[data_cols].apply(pd.to_numeric, errors='coerce')
115
+ game_rot['spread'] = game_rot['GAME_ID'].map(spread_dict)
116
+ game_rot['GAME_DATE'] = pd.to_datetime(game_rot['GAME_DATE']).dt.date
117
+
118
+ timestamp = gamelog_table['Date'].max()
119
+
120
+ return gamelog_table, rot_table, game_rot, timestamp
121
+
122
+ @st.cache_data(show_spinner=False)
123
+ def seasonlong_build(data_sample):
124
+ season_long_table = data_sample[['Player', 'Pos', 'Team']]
125
+ season_long_table['Min'] = data_sample.groupby(['Player', 'Season'], sort=False)['Min'].transform('mean').astype(float)
126
+ season_long_table['Touches'] = data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('mean').astype(float)
127
+ season_long_table['Touch/Min'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int) /
128
+ data_sample.groupby(['Player', 'Season'], sort=False)['Min'].transform('sum').astype(int))
129
+ season_long_table['Pts'] = data_sample.groupby(['Player', 'Season'], sort=False)['Pts'].transform('mean').astype(float)
130
+ season_long_table['FGM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('mean').astype(float)
131
+ season_long_table['FGA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('mean').astype(float)
132
+ season_long_table['FG%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('sum').astype(int) /
133
+ data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('sum').astype(int))
134
+ season_long_table['FG3M'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('mean').astype(float)
135
+ season_long_table['FG3A'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('mean').astype(float)
136
+ season_long_table['FG3%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('sum').astype(int) /
137
+ data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('sum').astype(int))
138
+ season_long_table['FTM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('mean').astype(float)
139
+ season_long_table['FTA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('mean').astype(float)
140
+ season_long_table['FT%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('sum').astype(int) /
141
+ data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('sum').astype(int))
142
+ season_long_table['OREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB Chance'].transform('mean').astype(float)
143
+ season_long_table['OREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB'].transform('mean').astype(float)
144
+ season_long_table['DREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB Chance'].transform('mean').astype(float)
145
+ season_long_table['DREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB'].transform('mean').astype(float)
146
+ season_long_table['REB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('mean').astype(float)
147
+ season_long_table['REB'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('mean').astype(float)
148
+ season_long_table['Passes'] = data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('mean').astype(float)
149
+ season_long_table['Alt Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Alt Assists'].transform('mean').astype(float)
150
+ season_long_table['FT Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['FT Assists'].transform('mean').astype(float)
151
+ season_long_table['Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('mean').astype(float)
152
+ season_long_table['Stl'] = data_sample.groupby(['Player', 'Season'], sort=False)['Stl'].transform('mean').astype(float)
153
+ season_long_table['Blk'] = data_sample.groupby(['Player', 'Season'], sort=False)['Blk'].transform('mean').astype(float)
154
+ season_long_table['Tov'] = data_sample.groupby(['Player', 'Season'], sort=False)['Tov'].transform('mean').astype(float)
155
+ season_long_table['PF'] = data_sample.groupby(['Player', 'Season'], sort=False)['PF'].transform('mean').astype(float)
156
+ season_long_table['DD'] = data_sample.groupby(['Player', 'Season'], sort=False)['DD'].transform('mean').astype(float)
157
+ season_long_table['TD'] = data_sample.groupby(['Player', 'Season'], sort=False)['TD'].transform('mean').astype(float)
158
+ season_long_table['Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('mean').astype(float)
159
+ season_long_table['FD_Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('mean').astype(float)
160
+ season_long_table['FPPM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FPPM'].transform('mean').astype(float)
161
+ season_long_table['Rebound%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('sum').astype(int) /
162
+ data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('sum').astype(int))
163
+ season_long_table['Assists/Pass'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('sum').astype(int) /
164
+ data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('sum').astype(int))
165
+ season_long_table['Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('sum').astype(int) /
166
+ data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int))
167
+ season_long_table['FD Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('sum').astype(int) /
168
+ data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int))
169
+ season_long_table = season_long_table.drop_duplicates(subset='Player')
170
+
171
+ season_long_table = season_long_table.sort_values(by='Fantasy', ascending=False)
172
+
173
+ season_long_table = season_long_table.set_axis(['Player', 'Pos', 'Team', 'Min', 'Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
174
+ 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
175
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
176
+ 'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'], axis=1)
177
+
178
+ return season_long_table
179
+
180
+ @st.cache_data(show_spinner=False)
181
+ def run_fantasy_corr(data_sample):
182
+ cor_testing = data_sample
183
+ cor_testing = cor_testing[cor_testing['Season'] == '22023']
184
+ date_list = cor_testing['Date'].unique().tolist()
185
+ player_list = cor_testing['Player'].unique().tolist()
186
+ corr_frame = pd.DataFrame()
187
+ corr_frame['DATE'] = date_list
188
+ for player in player_list:
189
+ player_testing = cor_testing[cor_testing['Player'] == player]
190
+ fantasy_map = dict(zip(player_testing['Date'], player_testing['Fantasy']))
191
+ corr_frame[player] = corr_frame['DATE'].map(fantasy_map)
192
+ players_fantasy = corr_frame.drop('DATE', axis=1)
193
+ corrM = players_fantasy.corr()
194
+
195
+ return corrM
196
+
197
+ @st.cache_data(show_spinner=False)
198
+ def run_min_corr(data_sample):
199
+ cor_testing = data_sample
200
+ cor_testing = cor_testing[cor_testing['Season'] == '22023']
201
+ date_list = cor_testing['Date'].unique().tolist()
202
+ player_list = cor_testing['Player'].unique().tolist()
203
+ corr_frame = pd.DataFrame()
204
+ corr_frame['DATE'] = date_list
205
+ for player in player_list:
206
+ player_testing = cor_testing[cor_testing['Player'] == player]
207
+ fantasy_map = dict(zip(player_testing['Date'], player_testing['Min']))
208
+ corr_frame[player] = corr_frame['DATE'].map(fantasy_map)
209
+ players_fantasy = corr_frame.drop('DATE', axis=1)
210
+ corrM = players_fantasy.corr()
211
+
212
+ return corrM
213
+
214
+ @st.cache_data(show_spinner=False)
215
+ def split_frame(input_df, rows):
216
+ df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)]
217
+ return df
218
+
219
+ def convert_df_to_csv(df):
220
+ return df.to_csv().encode('utf-8')
221
+
222
+ gamelog_table, rot_table, game_rot, timestamp = init_baselines()
223
+ t_stamp = f"Updated through: " + str(timestamp) + f" CST"
224
+ basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
225
+ basic_season_cols = ['Pos', 'Team', 'Min']
226
+ data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
227
+ 'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
228
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
229
+ 'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
230
+ season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
231
+ 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
232
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
233
+ 'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
234
+ game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
235
+ 'Fantasy', 'FD_Fantasy']
236
+ indv_teams = gamelog_table.drop_duplicates(subset='Team')
237
+ total_teams = indv_teams.Team.values.tolist()
238
+ indv_rot_teams = rot_table.drop_duplicates(subset='Team')
239
+ total_rot_teams = indv_rot_teams.Team.values.tolist()
240
+ indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
241
+ total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
242
+ indv_players = gamelog_table.drop_duplicates(subset='Player')
243
+ total_players = indv_players.Player.values.tolist()
244
+ total_dates = gamelog_table.Date.values.tolist()
245
+
246
+ tab1, tab2, tab3, tab4, tab5 = st.tabs(['Gamelogs', 'Correlation Matrix', 'Position vs. Opp', 'Positional Percentages', 'Game Rotations'])
247
+
248
+ with tab1:
249
+ st.info(t_stamp)
250
+ col1, col2 = st.columns([1, 9])
251
+ with col1:
252
+ if st.button("Reset Data", key='reset1'):
253
+ st.cache_data.clear()
254
+ gamelog_table, rot_table, game_rot, timestamp = init_baselines()
255
+ basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
256
+ basic_season_cols = ['Pos', 'Team', 'Min']
257
+ data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
258
+ 'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
259
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
260
+ 'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
261
+ season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
262
+ 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
263
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
264
+ 'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
265
+ game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
266
+ 'Fantasy', 'FD_Fantasy']
267
+ indv_teams = gamelog_table.drop_duplicates(subset='Team')
268
+ total_teams = indv_teams.Team.values.tolist()
269
+ indv_rot_teams = rot_table.drop_duplicates(subset='Team')
270
+ total_rot_teams = indv_rot_teams.Team.values.tolist()
271
+ indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
272
+ total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
273
+ indv_players = gamelog_table.drop_duplicates(subset='Player')
274
+ total_players = indv_players.Player.values.tolist()
275
+ total_dates = gamelog_table.Date.values.tolist()
276
+
277
+ split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='split_var1')
278
+ split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
279
+
280
+ if split_var2 == 'Specific Teams':
281
+ team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var1')
282
+ elif split_var2 == 'All':
283
+ team_var1 = total_teams
284
+
285
+ split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3')
286
+
287
+ if split_var3 == 'Specific Dates':
288
+ low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date')
289
+ if low_date is not None:
290
+ low_date = pd.to_datetime(low_date).date()
291
+ high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date')
292
+ if high_date is not None:
293
+ high_date = pd.to_datetime(high_date).date()
294
+ elif split_var3 == 'All':
295
+ low_date = gamelog_table['Date'].min()
296
+ high_date = gamelog_table['Date'].max()
297
+
298
+ split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='split_var4')
299
+
300
+ if split_var4 == 'Specific Players':
301
+ player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_players, key='player_var1')
302
+ elif split_var4 == 'All':
303
+ player_var1 = total_players
304
+
305
+ spread_var1 = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='spread_var1')
306
+
307
+ min_var1 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var1')
308
+
309
+ with col2:
310
+ working_data = gamelog_table
311
+ if split_var1 == 'Season Logs':
312
+ choose_cols = st.container()
313
+ with choose_cols:
314
+ choose_disp = st.multiselect('Which stats would you like to view?', options = season_data_cols, default = season_data_cols, key='col_display')
315
+ disp_stats = basic_season_cols + choose_disp
316
+ display = st.container()
317
+ working_data = working_data[working_data['Date'] >= low_date]
318
+ working_data = working_data[working_data['Date'] <= high_date]
319
+ working_data = working_data[working_data['Min'] >= min_var1[0]]
320
+ working_data = working_data[working_data['Min'] <= min_var1[1]]
321
+ working_data = working_data[working_data['spread'] >= spread_var1[0]]
322
+ working_data = working_data[working_data['spread'] <= spread_var1[1]]
323
+ working_data = working_data[working_data['Team'].isin(team_var1)]
324
+ working_data = working_data[working_data['Player'].isin(player_var1)]
325
+ season_long_table = seasonlong_build(working_data)
326
+ season_long_table = season_long_table.set_index('Player')
327
+ season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns")
328
+ display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True)
329
+ st.download_button(
330
+ label="Export seasonlogs Model",
331
+ data=convert_df_to_csv(season_long_table),
332
+ file_name='Seasonlogs_NBA_View.csv',
333
+ mime='text/csv',
334
+ )
335
+
336
+ elif split_var1 == 'Gamelogs':
337
+ choose_cols = st.container()
338
+ with choose_cols:
339
+ choose_disp_gamelog = st.multiselect('Which stats would you like to view?', options = data_cols, default = data_cols, key='choose_disp_gamelog')
340
+ gamelog_disp_stats = basic_cols + choose_disp_gamelog
341
+ working_data = working_data[working_data['Date'] >= low_date]
342
+ working_data = working_data[working_data['Date'] <= high_date]
343
+ working_data = working_data[working_data['Min'] >= min_var1[0]]
344
+ working_data = working_data[working_data['Min'] <= min_var1[1]]
345
+ working_data = working_data[working_data['spread'] >= spread_var1[0]]
346
+ working_data = working_data[working_data['spread'] <= spread_var1[1]]
347
+ working_data = working_data[working_data['Team'].isin(team_var1)]
348
+ working_data = working_data[working_data['Player'].isin(player_var1)]
349
+ working_data = working_data.reset_index(drop=True)
350
+ gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns")
351
+ display = st.container()
352
+
353
+ bottom_menu = st.columns((4, 1, 1))
354
+ with bottom_menu[2]:
355
+ batch_size = st.selectbox("Page Size", options=[25, 50, 100])
356
+ with bottom_menu[1]:
357
+ total_pages = (
358
+ int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1
359
+ )
360
+ current_page = st.number_input(
361
+ "Page", min_value=1, max_value=total_pages, step=1
362
+ )
363
+ with bottom_menu[0]:
364
+ st.markdown(f"Page **{current_page}** of **{total_pages}** ")
365
+
366
+
367
+ pages = split_frame(gamelog_data, batch_size)
368
+ # pages = pages.set_index('Player')
369
+ display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
370
+ st.download_button(
371
+ label="Export gamelogs Model",
372
+ data=convert_df_to_csv(gamelog_data),
373
+ file_name='Gamelogs_NBA_View.csv',
374
+ mime='text/csv',
375
+ )
376
+
377
+ with tab2:
378
+ st.info(t_stamp)
379
+ col1, col2 = st.columns([1, 9])
380
+ with col1:
381
+ if st.button("Reset Data", key='reset2'):
382
+ st.cache_data.clear()
383
+ gamelog_table, rot_table, game_rot, timestamp = init_baselines()
384
+ basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
385
+ basic_season_cols = ['Pos', 'Team', 'Min']
386
+ data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
387
+ 'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
388
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
389
+ 'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
390
+ season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
391
+ 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
392
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
393
+ 'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
394
+ game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
395
+ 'Fantasy', 'FD_Fantasy']
396
+ indv_teams = gamelog_table.drop_duplicates(subset='Team')
397
+ total_teams = indv_teams.Team.values.tolist()
398
+ indv_rot_teams = rot_table.drop_duplicates(subset='Team')
399
+ total_rot_teams = indv_rot_teams.Team.values.tolist()
400
+ indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
401
+ total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
402
+ indv_players = gamelog_table.drop_duplicates(subset='Player')
403
+ total_players = indv_players.Player.values.tolist()
404
+ total_dates = gamelog_table.Date.values.tolist()
405
+
406
+ corr_var = st.radio("Are you correlating fantasy or minutes?", ('Fantasy', 'Minutes'), key='corr_var')
407
+
408
+ split_var1_t2 = st.radio("Would you like to view specific teams or specific players?", ('Specific Teams', 'Specific Players'), key='split_var1_t2')
409
+
410
+ if split_var1_t2 == 'Specific Teams':
411
+ corr_var1_t2 = st.multiselect('Which teams would you like to include in the correlation?', options = total_teams, key='corr_var1_t2')
412
+ elif split_var1_t2 == 'Specific Players':
413
+ corr_var1_t2 = st.multiselect('Which players would you like to include in the correlation?', options = total_players, key='corr_var1_t2')
414
+
415
+ split_var2_t2 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3_t2')
416
+
417
+ if split_var2_t2 == 'Specific Dates':
418
+ low_date_t2 = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date_t2')
419
+ if low_date_t2 is not None:
420
+ low_date_t2 = pd.to_datetime(low_date_t2).date()
421
+ high_date_t2 = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date_t2')
422
+ if high_date_t2 is not None:
423
+ high_date_t2 = pd.to_datetime(high_date_t2).date()
424
+ elif split_var2_t2 == 'All':
425
+ low_date_t2 = gamelog_table['Date'].min()
426
+ high_date_t2 = gamelog_table['Date'].max()
427
+
428
+ spread_var1_t2 = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='spread_var1_t2')
429
+
430
+ min_var1_t2 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var1_t2')
431
+
432
+ with col2:
433
+ working_data = gamelog_table
434
+ if split_var1_t2 == 'Specific Teams':
435
+ display = st.container()
436
+ working_data = working_data.sort_values(by='Fantasy', ascending=False)
437
+ working_data = working_data[working_data['Date'] >= low_date_t2]
438
+ working_data = working_data[working_data['Date'] <= high_date_t2]
439
+ working_data = working_data[working_data['Min'] >= min_var1_t2[0]]
440
+ working_data = working_data[working_data['Min'] <= min_var1_t2[1]]
441
+ working_data = working_data[working_data['spread'] >= spread_var1_t2[0]]
442
+ working_data = working_data[working_data['spread'] <= spread_var1_t2[1]]
443
+ working_data = working_data[working_data['Team'].isin(corr_var1_t2)]
444
+ if corr_var == 'Fantasy':
445
+ corr_display = run_fantasy_corr(working_data)
446
+ elif corr_var == 'Minutes':
447
+ corr_display = run_min_corr(working_data)
448
+ display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=1000, use_container_width = True)
449
+
450
+ elif split_var1_t2 == 'Specific Players':
451
+ display = st.container()
452
+ working_data = working_data.sort_values(by='Fantasy', ascending=False)
453
+ working_data = working_data[working_data['Date'] >= low_date_t2]
454
+ working_data = working_data[working_data['Date'] <= high_date_t2]
455
+ working_data = working_data[working_data['Min'] >= min_var1_t2[0]]
456
+ working_data = working_data[working_data['Min'] <= min_var1_t2[1]]
457
+ working_data = working_data[working_data['spread'] >= spread_var1_t2[0]]
458
+ working_data = working_data[working_data['spread'] <= spread_var1_t2[1]]
459
+ working_data = working_data[working_data['Player'].isin(corr_var1_t2)]
460
+ if corr_var == 'Fantasy':
461
+ corr_display = run_fantasy_corr(working_data)
462
+ elif corr_var == 'Minutes':
463
+ corr_display = run_min_corr(working_data)
464
+ display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
465
+ st.download_button(
466
+ label="Export Correlations Model",
467
+ data=convert_df_to_csv(corr_display),
468
+ file_name='Correlations_NBA_View.csv',
469
+ mime='text/csv',
470
+ )
471
+
472
+ with tab3:
473
+ st.info(t_stamp)
474
+ col1, col2 = st.columns([1, 9])
475
+ with col1:
476
+ if st.button("Reset Data", key='reset3'):
477
+ st.cache_data.clear()
478
+ gamelog_table, rot_table, game_rot, timestamp = init_baselines()
479
+ basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
480
+ basic_season_cols = ['Pos', 'Team', 'Min']
481
+ data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
482
+ 'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
483
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
484
+ 'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
485
+ season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
486
+ 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
487
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
488
+ 'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
489
+ game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
490
+ 'Fantasy', 'FD_Fantasy']
491
+ indv_teams = gamelog_table.drop_duplicates(subset='Team')
492
+ total_teams = indv_teams.Team.values.tolist()
493
+ indv_rot_teams = rot_table.drop_duplicates(subset='Team')
494
+ total_rot_teams = indv_rot_teams.Team.values.tolist()
495
+ indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
496
+ total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
497
+ indv_players = gamelog_table.drop_duplicates(subset='Player')
498
+ total_players = indv_players.Player.values.tolist()
499
+ total_dates = gamelog_table.Date.values.tolist()
500
+
501
+ team_var3 = st.selectbox('Which opponent would you like to view?', options = total_teams, key='team_var3')
502
+ pos_var3 = st.selectbox('Which position would you like to view?', options = ['PG', 'SG', 'SF', 'PF', 'C'], key='pos_var3')
503
+ disp_var3 = st.radio('Which view would you like to see?', options = ['Fantasy', 'Stats'], key='disp_var3')
504
+ date_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='date_var3')
505
+
506
+ if date_var3 == 'Specific Dates':
507
+ low_date3 = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date3')
508
+ if low_date3 is not None:
509
+ low_date3 = pd.to_datetime(low_date3).date()
510
+ high_date3 = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date3')
511
+ if high_date3 is not None:
512
+ high_date3 = pd.to_datetime(high_date3).date()
513
+ elif date_var3 == 'All':
514
+ low_date3 = gamelog_table['Date'].min()
515
+ high_date3 = gamelog_table['Date'].max()
516
+
517
+ spread_var3 = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='spread_var3')
518
+
519
+ min_var3 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var3')
520
+
521
+ with col2:
522
+ if disp_var3 == 'Stats':
523
+ choose_cols = st.container()
524
+ with choose_cols:
525
+ choose_disp_matchup = st.multiselect('Which stats would you like to view?', options = data_cols, default = data_cols, key='choose_disp_matchup')
526
+ matchup_disp_stats = basic_cols + choose_disp_matchup
527
+ working_data = gamelog_table
528
+ working_data = working_data[gamelog_table['Date'] >= low_date3]
529
+ working_data = working_data[gamelog_table['Date'] <= high_date3]
530
+ season_long_table = seasonlong_build(working_data)
531
+ fantasy_dict = dict(zip(season_long_table['Player'], season_long_table['Fantasy']))
532
+ fd_fantasy_dict = dict(zip(season_long_table['Player'], season_long_table['FD_Fantasy']))
533
+
534
+ working_data = working_data[working_data['Pos'] == pos_var3]
535
+ working_data = working_data[working_data['Min'] >= min_var3[0]]
536
+ working_data = working_data[working_data['Min'] <= min_var3[1]]
537
+ working_data = working_data[working_data['spread'] >= spread_var3[0]]
538
+ working_data = working_data[working_data['spread'] <= spread_var3[1]]
539
+ working_data = working_data[working_data['Opp'] == team_var3]
540
+ working_data = working_data.reset_index(drop=True)
541
+ if disp_var3 == 'Fantasy':
542
+ gamelog_display = working_data[['Player', 'Pos', 'Team', 'Opp', 'Date', 'Min', 'Fantasy', 'FD_Fantasy']]
543
+ elif disp_var3 == 'Stats':
544
+ gamelog_data = working_data.reindex(matchup_disp_stats,axis="columns")
545
+ gamelog_display = gamelog_data
546
+ gamelog_display['Avg_Fantasy'] = gamelog_display['Player'].map(fantasy_dict)
547
+ gamelog_display['Avg_FD_Fantasy'] = gamelog_display['Player'].map(fd_fantasy_dict)
548
+ display = st.container()
549
+
550
+ # pages = pages.set_index('Player')
551
+ display.dataframe(gamelog_display.style.format(precision=2), height=500, use_container_width=True)
552
+ st.download_button(
553
+ label="Export Matchups Model",
554
+ data=convert_df_to_csv(gamelog_display),
555
+ file_name='Matchups_NBA_View.csv',
556
+ mime='text/csv',
557
+ )
558
+
559
+ with tab4:
560
+ st.info(t_stamp)
561
+ col1, col2 = st.columns([1, 9])
562
+ with col1:
563
+ if st.button("Reset Data", key='reset4'):
564
+ st.cache_data.clear()
565
+ gamelog_table, rot_table, game_rot, timestamp = init_baselines()
566
+ basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
567
+ basic_season_cols = ['Pos', 'Team', 'Min']
568
+ data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
569
+ 'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
570
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
571
+ 'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
572
+ season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
573
+ 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
574
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
575
+ 'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
576
+ game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
577
+ 'Fantasy', 'FD_Fantasy']
578
+ indv_teams = gamelog_table.drop_duplicates(subset='Team')
579
+ total_teams = indv_teams.Team.values.tolist()
580
+ indv_rot_teams = rot_table.drop_duplicates(subset='Team')
581
+ total_rot_teams = indv_rot_teams.Team.values.tolist()
582
+ indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
583
+ total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
584
+ indv_players = gamelog_table.drop_duplicates(subset='Player')
585
+ total_players = indv_players.Player.values.tolist()
586
+ total_dates = gamelog_table.Date.values.tolist()
587
+
588
+ split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
589
+
590
+ if split_var5 == 'Specific Teams':
591
+ team_var4 = st.multiselect('Which teams would you like to view?', options = total_rot_teams, key='team_var4')
592
+ elif split_var5 == 'All':
593
+ team_var4 = total_rot_teams
594
+
595
+
596
+ with col2:
597
+ working_data = rot_table
598
+ rot_display = working_data[working_data['Team'].isin(team_var4)]
599
+ display = st.container()
600
+
601
+ # rot_display = rot_display.set_index('Player')
602
+ display.dataframe(rot_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), height=500, use_container_width=True)
603
+ st.download_button(
604
+ label="Export Rotations Model",
605
+ data=convert_df_to_csv(rot_display),
606
+ file_name='Rotations_NBA_View.csv',
607
+ mime='text/csv',
608
+ )
609
+
610
+ with tab5:
611
+ st.info(t_stamp)
612
+ col1, col2 = st.columns([1, 9])
613
+ with col1:
614
+ if st.button("Reset Data", key='reset5'):
615
+ st.cache_data.clear()
616
+ gamelog_table, rot_table, game_rot, timestamp = init_baselines()
617
+ basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
618
+ basic_season_cols = ['Pos', 'Team', 'Min']
619
+ data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
620
+ 'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
621
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
622
+ 'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
623
+ season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
624
+ 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
625
+ 'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
626
+ 'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
627
+ game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
628
+ 'Fantasy', 'FD_Fantasy']
629
+ indv_teams = gamelog_table.drop_duplicates(subset='Team')
630
+ total_teams = indv_teams.Team.values.tolist()
631
+ indv_rot_teams = rot_table.drop_duplicates(subset='Team')
632
+ total_rot_teams = indv_rot_teams.Team.values.tolist()
633
+ indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
634
+ total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
635
+ indv_players = gamelog_table.drop_duplicates(subset='Player')
636
+ total_players = indv_players.Player.values.tolist()
637
+ total_dates = gamelog_table.Date.values.tolist()
638
+
639
+ game_rot_view = st.radio("What set would you like to view?", ('Team Rotations', 'Player Rotations'), key='game_rot_view')
640
+
641
+ if game_rot_view == 'Team Rotations':
642
+ game_rot_team = st.selectbox("What team would you like to work with?", options = total_game_rot_teams, key='game_rot_team')
643
+
644
+ game_rot_spread = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='game_rot_spread')
645
+
646
+ game_rot_min = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='game_rot_min')
647
+
648
+ game_rot_dates = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='game_rot_dates')
649
+
650
+ if game_rot_dates == 'Specific Dates':
651
+ game_rot_low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='game_rot_low_date')
652
+ if game_rot_low_date is not None:
653
+ game_rot_low_date = pd.to_datetime(low_date).date()
654
+ game_rot_high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='game_rot_high_date')
655
+ if game_rot_high_date is not None:
656
+ game_rot_high_date = pd.to_datetime(high_date).date()
657
+ elif game_rot_dates == 'All':
658
+ game_rot_low_date = gamelog_table['Date'].min()
659
+ game_rot_high_date = gamelog_table['Date'].max()
660
+ elif game_rot_view == 'Player Rotations':
661
+ game_rot_team = st.multiselect("What players would you like to work with?", options = total_players, key='game_rot_team')
662
+
663
+ game_rot_spread = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='game_rot_spread')
664
+
665
+ game_rot_min = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='game_rot_min')
666
+
667
+ game_rot_dates = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='game_rot_dates')
668
+
669
+ if game_rot_dates == 'Specific Dates':
670
+ game_rot_low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='game_rot_low_date')
671
+ if game_rot_low_date is not None:
672
+ game_rot_low_date = pd.to_datetime(low_date).date()
673
+ game_rot_high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='game_rot_high_date')
674
+ if game_rot_high_date is not None:
675
+ game_rot_high_date = pd.to_datetime(high_date).date()
676
+ elif game_rot_dates == 'All':
677
+ game_rot_low_date = gamelog_table['Date'].min()
678
+ game_rot_high_date = gamelog_table['Date'].max()
679
+
680
+
681
+ with col2:
682
+ if game_rot_view == 'Player Rotations':
683
+ team_backlog = game_rot[game_rot['PLAYER_NAME'].isin(game_rot_team)]
684
+ team_backlog = team_backlog[team_backlog['GAME_DATE'] >= game_rot_low_date]
685
+ team_backlog = team_backlog[team_backlog['GAME_DATE'] <= game_rot_high_date]
686
+ team_backlog = team_backlog[team_backlog['MIN'] >= game_rot_min[0]]
687
+ team_backlog = team_backlog[team_backlog['MIN'] <= game_rot_min[1]]
688
+ team_backlog = team_backlog[team_backlog['spread'] >= game_rot_spread[0]]
689
+ team_backlog = team_backlog[team_backlog['spread'] <= game_rot_spread[1]]
690
+ working_data = game_rot
691
+ display = st.container()
692
+ stats_disp = st.container()
693
+ check_rotation = team_backlog.sort_values(by='GAME_DATE', ascending=False)
694
+ game_rot_stats = check_rotation.reindex(game_rot_cols,axis="columns")
695
+ game_rot_stats = game_rot_stats.drop_duplicates(subset='backlog_lookup')
696
+
697
+ fig = px.timeline(check_rotation, x_start="Start", x_end="Finish", y="Task", range_x=[0,check_rotation["Finish"].max()], text='minutes')
698
+ fig.update_yaxes(autorange="reversed")
699
+
700
+ fig.layout.xaxis.type = 'linear'
701
+ fig.data[0].x = check_rotation.delta.tolist()
702
+ fig.add_vline(x=12, line_width=3, line_dash="dash", line_color="green")
703
+ fig.add_vline(x=24, line_width=3, line_dash="dash", line_color="green")
704
+ fig.add_vline(x=36, line_width=3, line_dash="dash", line_color="green")
705
+ # pages = pages.set_index('Player')
706
+ display.plotly_chart(fig, use_container_width=True)
707
+ stats_disp.dataframe(game_rot_stats.style.format(precision=2), hide_index=True, use_container_width = True)
708
+
709
+ elif game_rot_view == 'Team Rotations':
710
+ team_backlog = game_rot[game_rot['TEAM_ABBREVIATION'] == game_rot_team]
711
+ team_backlog = team_backlog[team_backlog['GAME_DATE'] >= game_rot_low_date]
712
+ team_backlog = team_backlog[team_backlog['GAME_DATE'] <= game_rot_high_date]
713
+ team_backlog = team_backlog[team_backlog['MIN'] >= game_rot_min[0]]
714
+ team_backlog = team_backlog[team_backlog['MIN'] <= game_rot_min[1]]
715
+ team_backlog = team_backlog[team_backlog['spread'] >= game_rot_spread[0]]
716
+ team_backlog = team_backlog[team_backlog['spread'] <= game_rot_spread[1]]
717
+ game_id_var = st.selectbox("What game would you like to view?", options = team_backlog['backlog_lookup'].unique(), key='game_id_var')
718
+ working_data = game_rot
719
+ display = st.container()
720
+ stats_disp = st.container()
721
+ check_rotation = working_data[working_data['backlog_lookup'] == game_id_var]
722
+ check_rotation = check_rotation.sort_values(by='Start', ascending=True)
723
+ game_rot_stats = check_rotation.reindex(game_rot_cols,axis="columns")
724
+ game_rot_stats = game_rot_stats.drop_duplicates(subset='PLAYER_NAME')
725
+
726
+ fig = px.timeline(check_rotation, x_start="Start", x_end="Finish", y="Task", range_x=[0,check_rotation["Finish"].max()], text='minutes')
727
+ fig.update_yaxes(autorange="reversed")
728
+
729
+ fig.layout.xaxis.type = 'linear'
730
+ fig.data[0].x = check_rotation.delta.tolist()
731
+ fig.add_vline(x=12, line_width=3, line_dash="dash", line_color="green")
732
+ fig.add_vline(x=24, line_width=3, line_dash="dash", line_color="green")
733
+ fig.add_vline(x=36, line_width=3, line_dash="dash", line_color="green")
734
+ # pages = pages.set_index('Player')
735
+ display.plotly_chart(fig, use_container_width=True)
736
+ stats_disp.dataframe(game_rot_stats.style.format(precision=2), hide_index=True, use_container_width = True)