Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,792 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pulp
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import gspread
|
| 6 |
+
from itertools import combinations
|
| 7 |
+
|
| 8 |
+
st.set_page_config(layout="wide")
|
| 9 |
+
|
| 10 |
+
@st.cache_resource
|
| 11 |
+
def init_conn():
|
| 12 |
+
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
| 13 |
+
"https://www.googleapis.com/auth/drive"]
|
| 14 |
+
|
| 15 |
+
credentials = {
|
| 16 |
+
"type": "service_account",
|
| 17 |
+
"project_id": "sheets-api-connect-378620",
|
| 18 |
+
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
|
| 19 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
| 20 |
+
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
| 21 |
+
"client_id": "106625872877651920064",
|
| 22 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
| 23 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
| 24 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
| 25 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
gc = gspread.service_account_from_dict(credentials)
|
| 29 |
+
return gc
|
| 30 |
+
|
| 31 |
+
gc = init_conn()
|
| 32 |
+
|
| 33 |
+
wrong_acro = ['WSH', 'AZ']
|
| 34 |
+
right_acro = ['WAS', 'ARI']
|
| 35 |
+
|
| 36 |
+
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
| 37 |
+
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
| 38 |
+
|
| 39 |
+
team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
|
| 40 |
+
'5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
|
| 41 |
+
|
| 42 |
+
dk_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
|
| 43 |
+
fd_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
|
| 44 |
+
|
| 45 |
+
secondary_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
|
| 46 |
+
secondary_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
|
| 47 |
+
|
| 48 |
+
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
|
| 49 |
+
all_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
|
| 50 |
+
final_Proj = 0
|
| 51 |
+
|
| 52 |
+
@st.cache_resource(ttl=600)
|
| 53 |
+
def load_time():
|
| 54 |
+
sh = gc.open_by_url(dk_player_projections)
|
| 55 |
+
worksheet = sh.worksheet('Timestamp')
|
| 56 |
+
raw_stamp = worksheet.acell('a1').value
|
| 57 |
+
|
| 58 |
+
t_stamp = f"Last update was at {raw_stamp}"
|
| 59 |
+
|
| 60 |
+
return t_stamp
|
| 61 |
+
|
| 62 |
+
@st.cache_resource(ttl=600)
|
| 63 |
+
def load_dk_player_projections(URL):
|
| 64 |
+
sh = gc.open_by_url(URL)
|
| 65 |
+
worksheet = sh.worksheet('DK_Projections')
|
| 66 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
| 67 |
+
load_display.replace('', np.nan, inplace=True)
|
| 68 |
+
load_display = load_display.drop_duplicates(subset='Player')
|
| 69 |
+
raw_display = load_display.dropna(subset=['Median'])
|
| 70 |
+
|
| 71 |
+
return raw_display
|
| 72 |
+
|
| 73 |
+
@st.cache_resource(ttl=600)
|
| 74 |
+
def load_fd_player_projections(URL):
|
| 75 |
+
sh = gc.open_by_url(URL)
|
| 76 |
+
worksheet = sh.worksheet('FD_Projections')
|
| 77 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
| 78 |
+
load_display.replace('', np.nan, inplace=True)
|
| 79 |
+
load_display = load_display.drop_duplicates(subset='Player')
|
| 80 |
+
raw_display = load_display.dropna(subset=['Median'])
|
| 81 |
+
|
| 82 |
+
return raw_display
|
| 83 |
+
|
| 84 |
+
@st.cache_resource(ttl=600)
|
| 85 |
+
def set_slate_teams():
|
| 86 |
+
sh = gc.open_by_url(all_dk_player_projections)
|
| 87 |
+
worksheet = sh.worksheet('Site_Info')
|
| 88 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 89 |
+
|
| 90 |
+
for checkVar in range(len(wrong_acro)):
|
| 91 |
+
raw_display['FD Main'] = raw_display['FD Main'].replace(wrong_acro, right_acro)
|
| 92 |
+
|
| 93 |
+
for checkVar in range(len(wrong_acro)):
|
| 94 |
+
raw_display['FD Secondary'] = raw_display['FD Secondary'].replace(wrong_acro, right_acro)
|
| 95 |
+
|
| 96 |
+
for checkVar in range(len(wrong_acro)):
|
| 97 |
+
raw_display['FD Overall'] = raw_display['FD Overall'].replace(wrong_acro, right_acro)
|
| 98 |
+
|
| 99 |
+
return raw_display
|
| 100 |
+
|
| 101 |
+
@st.cache_resource(ttl=600)
|
| 102 |
+
def load_scoring_percentages(URL):
|
| 103 |
+
sh = gc.open_by_url(URL)
|
| 104 |
+
worksheet = sh.worksheet('Scoring_Percentages')
|
| 105 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 106 |
+
raw_display['8+ runs'] = raw_display['8+ runs'].str.replace('%', '').astype(float)/100
|
| 107 |
+
raw_display['Win Percentage'] = raw_display['Win Percentage'].str.replace('%', '').astype(float)/100
|
| 108 |
+
raw_display['DK LevX'] = raw_display['DK LevX'].str.replace('%', '').astype(float)/100
|
| 109 |
+
raw_display['FD LevX'] = raw_display['FD LevX'].str.replace('%', '').astype(float)/100
|
| 110 |
+
|
| 111 |
+
return raw_display
|
| 112 |
+
|
| 113 |
+
@st.cache_data
|
| 114 |
+
def convert_df_to_csv(df):
|
| 115 |
+
return df.to_csv().encode('utf-8')
|
| 116 |
+
|
| 117 |
+
t_stamp = load_time()
|
| 118 |
+
site_slates = set_slate_teams()
|
| 119 |
+
col1, col2 = st.columns([1, 5])
|
| 120 |
+
|
| 121 |
+
with col1:
|
| 122 |
+
st.info(t_stamp)
|
| 123 |
+
if st.button("Load/Reset Data", key='reset5'):
|
| 124 |
+
st.cache_data.clear()
|
| 125 |
+
raw_baselines = load_dk_player_projections(all_dk_player_projections)
|
| 126 |
+
|
| 127 |
+
team_baselines = load_scoring_percentages(all_dk_player_projections)
|
| 128 |
+
|
| 129 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'All Games'), key='slate_var1')
|
| 130 |
+
site_var5 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var5')
|
| 131 |
+
if slate_var1 == 'Main Slate':
|
| 132 |
+
if site_var5 == 'Draftkings':
|
| 133 |
+
slate_teams = site_slates['DK Main'].values.tolist()
|
| 134 |
+
raw_baselines = load_dk_player_projections(all_dk_player_projections)
|
| 135 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
| 136 |
+
team_baselines = load_scoring_percentages(all_dk_player_projections)
|
| 137 |
+
team_baselines = team_baselines[team_baselines['Names'].isin(slate_teams)]
|
| 138 |
+
Max_Rank = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Names'])
|
| 139 |
+
SP_remove = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Opp SP'])
|
| 140 |
+
team_baselines = team_baselines[~team_baselines['Names'].isin(Max_Rank)]
|
| 141 |
+
Max_Upside = list(team_baselines[team_baselines['8+ Rank'] == team_baselines['8+ Rank'].min()]['Names'])
|
| 142 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
| 143 |
+
elif site_var5 == 'Fanduel':
|
| 144 |
+
slate_teams = site_slates['FD Main'].values.tolist()
|
| 145 |
+
raw_baselines = load_fd_player_projections(all_fd_player_projections)
|
| 146 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
| 147 |
+
team_baselines = load_scoring_percentages(all_fd_player_projections)
|
| 148 |
+
team_baselines = team_baselines[team_baselines['Names'].isin(slate_teams)]
|
| 149 |
+
Max_Rank = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Names'])
|
| 150 |
+
SP_remove = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Opp SP'])
|
| 151 |
+
team_baselines = team_baselines[~team_baselines['Names'].isin(Max_Rank)]
|
| 152 |
+
Max_Upside = list(team_baselines[team_baselines['8+ Rank'] == team_baselines['8+ Rank'].min()]['Names'])
|
| 153 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
| 154 |
+
elif slate_var1 == 'Secondary Slate':
|
| 155 |
+
if site_var5 == 'Draftkings':
|
| 156 |
+
slate_teams = site_slates['DK Secondary'].values.tolist()
|
| 157 |
+
raw_baselines = load_dk_player_projections(all_dk_player_projections)
|
| 158 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
| 159 |
+
team_baselines = load_scoring_percentages(all_dk_player_projections)
|
| 160 |
+
team_baselines = team_baselines[team_baselines['Names'].isin(slate_teams)]
|
| 161 |
+
Max_Rank = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Names'])
|
| 162 |
+
SP_remove = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Opp SP'])
|
| 163 |
+
team_baselines = team_baselines[~team_baselines['Names'].isin(Max_Rank)]
|
| 164 |
+
Max_Upside = list(team_baselines[team_baselines['8+ Rank'] == team_baselines['8+ Rank'].min()]['Names'])
|
| 165 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
| 166 |
+
elif site_var5 == 'Fanduel':
|
| 167 |
+
slate_teams = site_slates['FD Secondary'].values.tolist()
|
| 168 |
+
raw_baselines = load_fd_player_projections(all_fd_player_projections)
|
| 169 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
| 170 |
+
team_baselines = load_scoring_percentages(all_fd_player_projections)
|
| 171 |
+
team_baselines = team_baselines[team_baselines['Names'].isin(slate_teams)]
|
| 172 |
+
Max_Rank = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Names'])
|
| 173 |
+
SP_remove = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Opp SP'])
|
| 174 |
+
team_baselines = team_baselines[~team_baselines['Names'].isin(Max_Rank)]
|
| 175 |
+
Max_Upside = list(team_baselines[team_baselines['8+ Rank'] == team_baselines['8+ Rank'].min()]['Names'])
|
| 176 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
| 177 |
+
elif slate_var1 == 'All Games':
|
| 178 |
+
if site_var5 == 'Draftkings':
|
| 179 |
+
slate_teams = site_slates['DK Overall'].values.tolist()
|
| 180 |
+
raw_baselines = load_dk_player_projections(all_dk_player_projections)
|
| 181 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
| 182 |
+
team_baselines = load_scoring_percentages(all_dk_player_projections)
|
| 183 |
+
team_baselines = team_baselines[team_baselines['Names'].isin(slate_teams)]
|
| 184 |
+
Max_Rank = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Names'])
|
| 185 |
+
SP_remove = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Opp SP'])
|
| 186 |
+
team_baselines = team_baselines[~team_baselines['Names'].isin(Max_Rank)]
|
| 187 |
+
Max_Upside = list(team_baselines[team_baselines['8+ Rank'] == team_baselines['8+ Rank'].min()]['Names'])
|
| 188 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
| 189 |
+
elif site_var5 == 'Fanduel':
|
| 190 |
+
slate_teams = site_slates['FD Overall'].values.tolist()
|
| 191 |
+
raw_baselines = load_fd_player_projections(all_fd_player_projections)
|
| 192 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
| 193 |
+
team_baselines = load_scoring_percentages(all_fd_player_projections)
|
| 194 |
+
team_baselines = team_baselines[team_baselines['Names'].isin(slate_teams)]
|
| 195 |
+
Max_Rank = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Names'])
|
| 196 |
+
SP_remove = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Opp SP'])
|
| 197 |
+
team_baselines = team_baselines[~team_baselines['Names'].isin(Max_Rank)]
|
| 198 |
+
Max_Upside = list(team_baselines[team_baselines['8+ Rank'] == team_baselines['8+ Rank'].min()]['Names'])
|
| 199 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
| 200 |
+
contest_var5 = st.selectbox("What contest type are you optimizing for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var5')
|
| 201 |
+
if contest_var5 == 'Small Field GPP':
|
| 202 |
+
opto_var5 = st.selectbox("Pivot optimal or Manual?", ('Pivot Optimal', 'Manual'), key='opto_var5')
|
| 203 |
+
if opto_var5 == "Manual":
|
| 204 |
+
stack_var5 = st.selectbox('Which teams are you stacking?', options = raw_baselines['Team'].unique(), key='stack_var5')
|
| 205 |
+
elif opto_var5 == "Pivot Optimal":
|
| 206 |
+
stack_var5 = Max_Rank[0]
|
| 207 |
+
elif contest_var5 == 'Large Field GPP':
|
| 208 |
+
opto_var5 = st.selectbox("Pivot optimal or Manual?", ('Pivot Optimal', 'Manual'), key='opto_var5')
|
| 209 |
+
if opto_var5 == "Manual":
|
| 210 |
+
stack_var5 = st.selectbox('Which team are you stacking?', options = raw_baselines['Team'].unique(), key='stack_var5')
|
| 211 |
+
ministack_var5 = st.selectbox('Which team is your secondary stack?', options = raw_baselines['Team'].unique(), key='ministack_var5')
|
| 212 |
+
elif opto_var5 == "Pivot Optimal":
|
| 213 |
+
stack_var5 = Max_Upside[0]
|
| 214 |
+
ministack_var5 = Max_Rank[0]
|
| 215 |
+
split_var5 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var5')
|
| 216 |
+
if split_var5 == 'Specific Games':
|
| 217 |
+
team_var5 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var5')
|
| 218 |
+
elif split_var5 == 'Full Slate Run':
|
| 219 |
+
team_var5 = raw_baselines.Team.values.tolist()
|
| 220 |
+
lock_var5 = st.multiselect("Are there any players you want to use in all lineups (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var5')
|
| 221 |
+
avoid_var5 = st.multiselect("Are there any players you want to remove from the pool (Drop Button)?", options = raw_baselines['Player'].unique(), key='avoid_var5')
|
| 222 |
+
linenum_var5 = st.number_input("How many lineups would you like to produce?", min_value = 1, max_value = 300, value = 20, step = 1, key='linenum_var5')
|
| 223 |
+
if site_var5 == 'Draftkings':
|
| 224 |
+
min_sal5 = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100, key='min_sal5')
|
| 225 |
+
max_sal5 = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100, key='max_sal5')
|
| 226 |
+
elif site_var5 == 'Fanduel':
|
| 227 |
+
min_sal5 = st.number_input('Min Salary', min_value = 25000, max_value = 34900, value = 34000, step = 100, key='min_sal5')
|
| 228 |
+
max_sal5 = st.number_input('Max Salary', min_value = 25000, max_value = 35000, value = 35000, step = 100, key='max_sal5')
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
with col2:
|
| 232 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(team_var5)]
|
| 233 |
+
raw_baselines = raw_baselines[~raw_baselines['Player'].isin(avoid_var5)]
|
| 234 |
+
if contest_var5 == 'Small Field GPP':
|
| 235 |
+
if site_var5 == 'Draftkings':
|
| 236 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] == 'SP') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean() >= 0), raw_baselines['Own'] * (5 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean())/100) + raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean(), raw_baselines['Own'])
|
| 237 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] != 'SP') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean() >= 0), raw_baselines['Own'] * (10 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean())/100) + raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean(), raw_baselines['Own%'])
|
| 238 |
+
raw_baselines['Own%'] = np.where(raw_baselines['Own%'] > 75, 75, raw_baselines['Own%'])
|
| 239 |
+
elif site_var5 == 'Fanduel':
|
| 240 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] == 'P') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean() >= 0), raw_baselines['Own'] * (5 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean())/50) + raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean(), raw_baselines['Own'])
|
| 241 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] != 'P') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean() >= 0), raw_baselines['Own'] * (10 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean())/150) + raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean(), raw_baselines['Own%'])
|
| 242 |
+
raw_baselines['Own%'] = np.where(raw_baselines['Own%'] > 75, 75, raw_baselines['Own%'])
|
| 243 |
+
elif contest_var5 == 'Large Field GPP':
|
| 244 |
+
if site_var5 == 'Draftkings':
|
| 245 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] == 'SP') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean() >= 0), raw_baselines['Own'] * (2.5 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean())/100) + raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean(), raw_baselines['Own'])
|
| 246 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] != 'SP') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean() >= 0), raw_baselines['Own'] * (5 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean())/100) + raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean(), raw_baselines['Own%'])
|
| 247 |
+
raw_baselines['Own%'] = np.where(raw_baselines['Own%'] > 75, 75, raw_baselines['Own%'])
|
| 248 |
+
elif site_var5 == 'Fanduel':
|
| 249 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] == 'P') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean() >= 0), raw_baselines['Own'] * (2.5 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean())/50) + raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean(), raw_baselines['Own'])
|
| 250 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] != 'P') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean() >= 0), raw_baselines['Own'] * (5 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean())/150) + raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean(), raw_baselines['Own%'])
|
| 251 |
+
raw_baselines['Own%'] = np.where(raw_baselines['Own%'] > 75, 75, raw_baselines['Own%'])
|
| 252 |
+
elif contest_var5 == 'Cash':
|
| 253 |
+
if site_var5 == 'Draftkings':
|
| 254 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] == 'SP') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean() >= 0), raw_baselines['Own'] * (6 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean())/100) + raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean(), raw_baselines['Own'])
|
| 255 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] != 'SP') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean() >= 0), raw_baselines['Own'] * (11 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean())/100) + raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean(), raw_baselines['Own%'])
|
| 256 |
+
raw_baselines['Own%'] = np.where(raw_baselines['Own%'] > 75, 75, raw_baselines['Own%'])
|
| 257 |
+
elif site_var5 == 'Fanduel':
|
| 258 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] == 'P') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean() >= 0), raw_baselines['Own'] * (6 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean())/50) + raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean(), raw_baselines['Own'])
|
| 259 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] != 'P') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean() >= 0), raw_baselines['Own'] * (11 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean())/150) + raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean(), raw_baselines['Own%'])
|
| 260 |
+
raw_baselines['Own%'] = np.where(raw_baselines['Own%'] > 75, 75, raw_baselines['Own%'])
|
| 261 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own%']]
|
| 262 |
+
raw_baselines.rename(columns={"Own%": "Own"}, inplace = True)
|
| 263 |
+
raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
|
| 264 |
+
raw_baselines['lock'] = np.where(raw_baselines['Player'].isin(lock_var5), 1, 0)
|
| 265 |
+
st.dataframe(raw_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 266 |
+
st.download_button(
|
| 267 |
+
label="Export Projections",
|
| 268 |
+
data=convert_df_to_csv(raw_baselines),
|
| 269 |
+
file_name='MLB_proj_export.csv',
|
| 270 |
+
mime='text/csv',
|
| 271 |
+
)
|
| 272 |
+
if st.button('Optimize'):
|
| 273 |
+
max_proj = 1000
|
| 274 |
+
max_own = 1000
|
| 275 |
+
total_proj = 0
|
| 276 |
+
total_own = 0
|
| 277 |
+
optimize_container = st.empty()
|
| 278 |
+
lineup_display = []
|
| 279 |
+
check_list = []
|
| 280 |
+
lineups = []
|
| 281 |
+
portfolio = pd.DataFrame()
|
| 282 |
+
x = 1
|
| 283 |
+
|
| 284 |
+
with st.spinner('Wait for it...'):
|
| 285 |
+
with optimize_container:
|
| 286 |
+
|
| 287 |
+
while x <= linenum_var5:
|
| 288 |
+
sorted_lineup = []
|
| 289 |
+
p_used = []
|
| 290 |
+
cvar = 0
|
| 291 |
+
firvar = 0
|
| 292 |
+
secvar = 0
|
| 293 |
+
thirvar = 0
|
| 294 |
+
|
| 295 |
+
raw_proj_file = raw_baselines
|
| 296 |
+
raw_flex_file = raw_proj_file.dropna(how='all')
|
| 297 |
+
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
|
| 298 |
+
flex_file = raw_flex_file
|
| 299 |
+
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
|
| 300 |
+
flex_file['name_var'] = flex_file['Player']
|
| 301 |
+
flex_file['lock'] = np.where(flex_file['Player'].isin(lock_var5), 1, 0)
|
| 302 |
+
player_ids = flex_file.index
|
| 303 |
+
|
| 304 |
+
overall_players = flex_file[['Player']]
|
| 305 |
+
overall_players['player_var_add'] = flex_file.index
|
| 306 |
+
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
|
| 307 |
+
|
| 308 |
+
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
|
| 309 |
+
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
|
| 310 |
+
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
|
| 311 |
+
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
|
| 312 |
+
|
| 313 |
+
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
|
| 314 |
+
player_team = dict(zip(flex_file['Player'], flex_file['Team']))
|
| 315 |
+
player_pos = dict(zip(flex_file['Player'], flex_file['Position']))
|
| 316 |
+
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
|
| 317 |
+
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
|
| 318 |
+
|
| 319 |
+
# obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
| 320 |
+
# total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
| 321 |
+
|
| 322 |
+
# obj_points_max = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
| 323 |
+
# obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
|
| 324 |
+
|
| 325 |
+
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
|
| 326 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal5
|
| 327 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal5
|
| 328 |
+
|
| 329 |
+
if site_var5 == 'Draftkings':
|
| 330 |
+
|
| 331 |
+
if contest_var5 == 'Cash':
|
| 332 |
+
for flex in flex_file['Team'].unique():
|
| 333 |
+
sub_idx = flex_file[(flex_file['Team'] == flex) & (flex_file['Position'] != 'SP')].index
|
| 334 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 5
|
| 335 |
+
elif contest_var5 == 'Small Field GPP':
|
| 336 |
+
for flex in flex_file['Team'].unique():
|
| 337 |
+
sub_idx = flex_file[(flex_file['Team'] == stack_var5) & (flex_file['Position'] != 'SP')].index
|
| 338 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
|
| 339 |
+
elif contest_var5 == 'Large Field GPP':
|
| 340 |
+
for flex in flex_file['Team'].unique():
|
| 341 |
+
sub_idx = flex_file[(flex_file['Team'] == stack_var5) & (flex_file['Position'] != 'SP')].index
|
| 342 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
|
| 343 |
+
for flex in flex_file['Team'].unique():
|
| 344 |
+
sub_idx = flex_file[(flex_file['Team'] == ministack_var5) & (flex_file['Position'] != 'SP')].index
|
| 345 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 3
|
| 346 |
+
|
| 347 |
+
for flex in flex_file['lock'].unique():
|
| 348 |
+
sub_idx = flex_file[flex_file['lock'] == 1].index
|
| 349 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var5)
|
| 350 |
+
|
| 351 |
+
for flex in flex_file['Position'].unique():
|
| 352 |
+
sub_idx = flex_file[flex_file['Position'] != "Var"].index
|
| 353 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 10
|
| 354 |
+
|
| 355 |
+
for flex in flex_file['Position'].unique():
|
| 356 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("SP")].index
|
| 357 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 2
|
| 358 |
+
|
| 359 |
+
for flex in flex_file['Position'].unique():
|
| 360 |
+
sub_idx = flex_file[flex_file['Position'] == "C"].index
|
| 361 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 1
|
| 362 |
+
|
| 363 |
+
for flex in flex_file['Position'].unique():
|
| 364 |
+
sub_idx = flex_file[flex_file['Position'] == "1B"].index
|
| 365 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 1
|
| 366 |
+
|
| 367 |
+
for flex in flex_file['Position'].unique():
|
| 368 |
+
sub_idx = flex_file[flex_file['Position'] == "2B"].index
|
| 369 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 1
|
| 370 |
+
|
| 371 |
+
for flex in flex_file['Position'].unique():
|
| 372 |
+
sub_idx = flex_file[flex_file['Position'] == "3B"].index
|
| 373 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 1
|
| 374 |
+
|
| 375 |
+
for flex in flex_file['Position'].unique():
|
| 376 |
+
sub_idx = flex_file[flex_file['Position'] == "SS"].index
|
| 377 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 1
|
| 378 |
+
|
| 379 |
+
for flex in flex_file['Position'].unique():
|
| 380 |
+
sub_idx = flex_file[flex_file['Position'] == "OF"].index
|
| 381 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
|
| 382 |
+
|
| 383 |
+
for flex in flex_file['Position'].unique():
|
| 384 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("C")].index
|
| 385 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
| 386 |
+
|
| 387 |
+
for flex in flex_file['Position'].unique():
|
| 388 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("1B")].index
|
| 389 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
| 390 |
+
|
| 391 |
+
for flex in flex_file['Position'].unique():
|
| 392 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("2B")].index
|
| 393 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
| 394 |
+
|
| 395 |
+
for flex in flex_file['Position'].unique():
|
| 396 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("3B")].index
|
| 397 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
| 398 |
+
|
| 399 |
+
for flex in flex_file['Position'].unique():
|
| 400 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("SS")].index
|
| 401 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
| 402 |
+
|
| 403 |
+
for flex in flex_file['Position'].unique():
|
| 404 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("OF")].index
|
| 405 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 3
|
| 406 |
+
|
| 407 |
+
for flex in flex_file['Position'].unique():
|
| 408 |
+
sub_idx = flex_file[(flex_file['Position'] == "SS") | (flex_file['Position'] == "3B")| (flex_file['Position'] == "3B/SS")].index
|
| 409 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
| 410 |
+
|
| 411 |
+
for flex in flex_file['Position'].unique():
|
| 412 |
+
sub_idx = flex_file[(flex_file['Position'] == "SS") | (flex_file['Position'] == "2B")| (flex_file['Position'] == "2B/SS")].index
|
| 413 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
| 414 |
+
|
| 415 |
+
for flex in flex_file['Position'].unique():
|
| 416 |
+
sub_idx = flex_file[(flex_file['Position'] == "2B") | (flex_file['Position'] == "3B")| (flex_file['Position'] == "2B/3B")].index
|
| 417 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
| 418 |
+
|
| 419 |
+
for flex in flex_file['Position'].unique():
|
| 420 |
+
sub_idx = flex_file[(flex_file['Position'] == "1B") | (flex_file['Position'] == "3B")| (flex_file['Position'] == "1B/3B")].index
|
| 421 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
| 422 |
+
|
| 423 |
+
for flex in flex_file['Position'].unique():
|
| 424 |
+
sub_idx = flex_file[(flex_file['Position'] == "1B") | (flex_file['Position'] == "C")| (flex_file['Position'] == "1B/C")].index
|
| 425 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
| 426 |
+
|
| 427 |
+
for flex in flex_file['Position'].unique():
|
| 428 |
+
sub_idx = flex_file[(flex_file['Position'] == "SS") | (flex_file['Position'] == "OF")| (flex_file['Position'] == "SS/OF")].index
|
| 429 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
|
| 430 |
+
|
| 431 |
+
elif site_var5 == 'Fanduel':
|
| 432 |
+
|
| 433 |
+
if contest_var5 == 'Cash':
|
| 434 |
+
for flex in flex_file['Team'].unique():
|
| 435 |
+
sub_idx = flex_file[(flex_file['Team'] == flex) & (flex_file['Position'] != 'P')].index
|
| 436 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
|
| 437 |
+
elif contest_var5 == 'Small Field GPP':
|
| 438 |
+
for flex in flex_file['Team'].unique():
|
| 439 |
+
sub_idx = flex_file[(flex_file['Team'] == stack_var5) & (flex_file['Position'] != 'P')].index
|
| 440 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 4
|
| 441 |
+
elif contest_var5 == 'Large Field GPP':
|
| 442 |
+
for flex in flex_file['Team'].unique():
|
| 443 |
+
sub_idx = flex_file[(flex_file['Team'] == stack_var5)].index
|
| 444 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 4
|
| 445 |
+
for flex in flex_file['Team'].unique():
|
| 446 |
+
sub_idx = flex_file[(flex_file['Team'] == ministack_var5)].index
|
| 447 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 4
|
| 448 |
+
|
| 449 |
+
for flex in flex_file['lock'].unique():
|
| 450 |
+
sub_idx = flex_file[flex_file['lock'] == 1].index
|
| 451 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var5)
|
| 452 |
+
|
| 453 |
+
for flex in flex_file['Position'].unique():
|
| 454 |
+
sub_idx = flex_file[flex_file['Position'] != "Var"].index
|
| 455 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 9
|
| 456 |
+
|
| 457 |
+
for flex in flex_file['Position'].unique():
|
| 458 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("P")].index
|
| 459 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
|
| 460 |
+
|
| 461 |
+
for flex in flex_file['Position'].unique():
|
| 462 |
+
sub_idx = flex_file[(flex_file['Position'] == "C") | (flex_file['Position'] == "1B")].index
|
| 463 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
| 464 |
+
|
| 465 |
+
for flex in flex_file['Position'].unique():
|
| 466 |
+
sub_idx = flex_file[(flex_file['Position'] == "C") | (flex_file['Position'] == "1B") | (flex_file['Position'] == "OF")].index
|
| 467 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 5
|
| 468 |
+
|
| 469 |
+
for flex in flex_file['Position'].unique():
|
| 470 |
+
sub_idx = flex_file[flex_file['Position'] == "2B"].index
|
| 471 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
| 472 |
+
|
| 473 |
+
for flex in flex_file['Position'].unique():
|
| 474 |
+
sub_idx = flex_file[flex_file['Position'] == "3B"].index
|
| 475 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
| 476 |
+
|
| 477 |
+
for flex in flex_file['Position'].unique():
|
| 478 |
+
sub_idx = flex_file[flex_file['Position'] == "SS"].index
|
| 479 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
| 480 |
+
|
| 481 |
+
for flex in flex_file['Position'].unique():
|
| 482 |
+
sub_idx = flex_file[flex_file['Position'] == "OF"].index
|
| 483 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
|
| 484 |
+
|
| 485 |
+
for flex in flex_file['Position'].unique():
|
| 486 |
+
sub_idx = flex_file[(flex_file['Position'] == "OF") | (flex_file['Position'] == "C")].index
|
| 487 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 5
|
| 488 |
+
|
| 489 |
+
for flex in flex_file['Position'].unique():
|
| 490 |
+
sub_idx = flex_file[(flex_file['Position'] == "OF") | (flex_file['Position'] == "1B")].index
|
| 491 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 5
|
| 492 |
+
|
| 493 |
+
for flex in flex_file['Position'].unique():
|
| 494 |
+
sub_idx = flex_file[(flex_file['Position'].str.contains("C")) | (flex_file['Position'].str.contains("1B"))].index
|
| 495 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
| 496 |
+
|
| 497 |
+
for flex in flex_file['Position'].unique():
|
| 498 |
+
sub_idx = flex_file[(flex_file['Position'].str.contains("2B")) | (flex_file['Position'].str.contains("SS"))].index
|
| 499 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
|
| 500 |
+
|
| 501 |
+
for flex in flex_file['Position'].unique():
|
| 502 |
+
sub_idx = flex_file[(flex_file['Position'] == "C") | (flex_file['Position'] == "SS")].index
|
| 503 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
|
| 504 |
+
|
| 505 |
+
for flex in flex_file['Position'].unique():
|
| 506 |
+
sub_idx = flex_file[(flex_file['Position'] == "SS") | (flex_file['Position'] == "2B") | (flex_file['Position'] == "OF") | (flex_file['Position'] == "2B/SS/OF")].index
|
| 507 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 5
|
| 508 |
+
|
| 509 |
+
for flex in flex_file['Position'].unique():
|
| 510 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("2B")].index
|
| 511 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
| 512 |
+
|
| 513 |
+
for flex in flex_file['Position'].unique():
|
| 514 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("3B")].index
|
| 515 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
| 516 |
+
|
| 517 |
+
for flex in flex_file['Position'].unique():
|
| 518 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("SS")].index
|
| 519 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
| 520 |
+
|
| 521 |
+
for flex in flex_file['Position'].unique():
|
| 522 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("OF")].index
|
| 523 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 3
|
| 524 |
+
|
| 525 |
+
for flex in flex_file['Position'].unique():
|
| 526 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("OF")].index
|
| 527 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
|
| 528 |
+
|
| 529 |
+
player_count = []
|
| 530 |
+
player_trim = []
|
| 531 |
+
lineup_list = []
|
| 532 |
+
|
| 533 |
+
if contest_var5 == 'Cash':
|
| 534 |
+
obj_points = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
|
| 535 |
+
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
| 536 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_own - .001
|
| 537 |
+
elif contest_var5 != 'Cash':
|
| 538 |
+
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
| 539 |
+
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
| 540 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_proj - .01
|
| 541 |
+
|
| 542 |
+
total_score.solve()
|
| 543 |
+
for v in total_score.variables():
|
| 544 |
+
if v.varValue > 0:
|
| 545 |
+
lineup_list.append(v.name)
|
| 546 |
+
df = pd.DataFrame(lineup_list)
|
| 547 |
+
df['Names'] = df[0].map(player_match)
|
| 548 |
+
df['Cost'] = df['Names'].map(player_sal)
|
| 549 |
+
df['Proj'] = df['Names'].map(player_proj)
|
| 550 |
+
df['Own'] = df['Names'].map(player_own)
|
| 551 |
+
total_cost = sum(df['Cost'])
|
| 552 |
+
total_own = sum(df['Own'])
|
| 553 |
+
total_proj = sum(df['Proj'])
|
| 554 |
+
lineup_raw = pd.DataFrame(lineup_list)
|
| 555 |
+
lineup_raw['Names'] = lineup_raw[0].map(player_match)
|
| 556 |
+
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
|
| 557 |
+
lineup_final = lineup_raw.sort_values(by=['value'])
|
| 558 |
+
del lineup_final[lineup_final.columns[0]]
|
| 559 |
+
del lineup_final[lineup_final.columns[1]]
|
| 560 |
+
lineup_final = lineup_final.reset_index(drop=True)
|
| 561 |
+
|
| 562 |
+
if site_var5 == 'Draftkings':
|
| 563 |
+
line_hold = lineup_final[['Names']]
|
| 564 |
+
line_hold['pos'] = line_hold['Names'].map(player_pos)
|
| 565 |
+
|
| 566 |
+
for pname in range(0,len(line_hold)):
|
| 567 |
+
if line_hold.iat[pname,1] == 'SP':
|
| 568 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 569 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 570 |
+
p_used.extend(sorted_lineup)
|
| 571 |
+
|
| 572 |
+
for pname in range(0,len(line_hold)):
|
| 573 |
+
if line_hold.iat[pname,1] == 'C':
|
| 574 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 575 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 576 |
+
cvar = 1
|
| 577 |
+
p_used.extend(sorted_lineup)
|
| 578 |
+
|
| 579 |
+
if cvar != 1:
|
| 580 |
+
for pname in range(0,len(line_hold)):
|
| 581 |
+
if 'C' in line_hold.iat[pname,1]:
|
| 582 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 583 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 584 |
+
p_used.extend(sorted_lineup)
|
| 585 |
+
|
| 586 |
+
for pname in range(0,len(line_hold)):
|
| 587 |
+
if line_hold.iat[pname,1] == '1B':
|
| 588 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 589 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 590 |
+
firvar = 1
|
| 591 |
+
p_used.extend(sorted_lineup)
|
| 592 |
+
|
| 593 |
+
if firvar != 1:
|
| 594 |
+
for pname in range(0,len(line_hold)):
|
| 595 |
+
if '1B' in line_hold.iat[pname,1]:
|
| 596 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 597 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 598 |
+
p_used.extend(sorted_lineup)
|
| 599 |
+
|
| 600 |
+
for pname in range(0,len(line_hold)):
|
| 601 |
+
if line_hold.iat[pname,1] == '2B':
|
| 602 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 603 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 604 |
+
secvar = 1
|
| 605 |
+
p_used.extend(sorted_lineup)
|
| 606 |
+
|
| 607 |
+
if secvar != 1:
|
| 608 |
+
for pname in range(0,len(line_hold)):
|
| 609 |
+
if '2B' in line_hold.iat[pname,1]:
|
| 610 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 611 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 612 |
+
p_used.extend(sorted_lineup)
|
| 613 |
+
|
| 614 |
+
for pname in range(0,len(line_hold)):
|
| 615 |
+
if line_hold.iat[pname,1] == '3B':
|
| 616 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 617 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 618 |
+
thirvar = 1
|
| 619 |
+
p_used.extend(sorted_lineup)
|
| 620 |
+
|
| 621 |
+
if thirvar != 1:
|
| 622 |
+
for pname in range(0,len(line_hold)):
|
| 623 |
+
if '3B' in line_hold.iat[pname,1]:
|
| 624 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 625 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 626 |
+
p_used.extend(sorted_lineup)
|
| 627 |
+
|
| 628 |
+
for pname in range(0,len(line_hold)):
|
| 629 |
+
if line_hold.iat[pname,1] == 'SS':
|
| 630 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 631 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 632 |
+
p_used.extend(sorted_lineup)
|
| 633 |
+
|
| 634 |
+
for pname in range(0,len(line_hold)):
|
| 635 |
+
if 'SS' in line_hold.iat[pname,1]:
|
| 636 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 637 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 638 |
+
p_used.extend(sorted_lineup)
|
| 639 |
+
|
| 640 |
+
for pname in range(0,len(line_hold)):
|
| 641 |
+
if line_hold.iat[pname,1] == 'OF':
|
| 642 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 643 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 644 |
+
p_used.extend(sorted_lineup)
|
| 645 |
+
|
| 646 |
+
for pname in range(0,len(line_hold)):
|
| 647 |
+
if 'OF' in line_hold.iat[pname,1]:
|
| 648 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 649 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 650 |
+
p_used.extend(sorted_lineup)
|
| 651 |
+
|
| 652 |
+
lineup_final['sorted'] = sorted_lineup
|
| 653 |
+
lineup_final = lineup_final.drop(columns=['Names'])
|
| 654 |
+
lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
|
| 655 |
+
|
| 656 |
+
elif site_var5 == 'Fanduel':
|
| 657 |
+
line_hold = lineup_final[['Names']]
|
| 658 |
+
line_hold['pos'] = line_hold['Names'].map(player_pos)
|
| 659 |
+
|
| 660 |
+
for pname in range(0,len(line_hold)):
|
| 661 |
+
if line_hold.iat[pname,1] == 'P':
|
| 662 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 663 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 664 |
+
p_used.extend(sorted_lineup)
|
| 665 |
+
|
| 666 |
+
for pname in range(0,len(line_hold)):
|
| 667 |
+
if line_hold.iat[pname,1] == 'C' or line_hold.iat[pname,1] == '1B':
|
| 668 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 669 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 670 |
+
cvar = 1
|
| 671 |
+
p_used.extend(sorted_lineup)
|
| 672 |
+
|
| 673 |
+
if cvar != 1:
|
| 674 |
+
for pname in range(0,len(line_hold)):
|
| 675 |
+
if line_hold.iat[pname,1] in ['C', '1B']:
|
| 676 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 677 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 678 |
+
p_used.extend(sorted_lineup)
|
| 679 |
+
|
| 680 |
+
for pname in range(0,len(line_hold)):
|
| 681 |
+
if line_hold.iat[pname,1] == '2B':
|
| 682 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 683 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 684 |
+
secvar = 1
|
| 685 |
+
p_used.extend(sorted_lineup)
|
| 686 |
+
|
| 687 |
+
if secvar != 1:
|
| 688 |
+
for pname in range(0,len(line_hold)):
|
| 689 |
+
if '2B' in line_hold.iat[pname,1]:
|
| 690 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 691 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 692 |
+
p_used.extend(sorted_lineup)
|
| 693 |
+
|
| 694 |
+
for pname in range(0,len(line_hold)):
|
| 695 |
+
if line_hold.iat[pname,1] == '3B':
|
| 696 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 697 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 698 |
+
thirvar = 1
|
| 699 |
+
p_used.extend(sorted_lineup)
|
| 700 |
+
|
| 701 |
+
if thirvar != 1:
|
| 702 |
+
for pname in range(0,len(line_hold)):
|
| 703 |
+
if '3B' in line_hold.iat[pname,1]:
|
| 704 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 705 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 706 |
+
p_used.extend(sorted_lineup)
|
| 707 |
+
|
| 708 |
+
for pname in range(0,len(line_hold)):
|
| 709 |
+
if line_hold.iat[pname,1] == 'SS':
|
| 710 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 711 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 712 |
+
p_used.extend(sorted_lineup)
|
| 713 |
+
|
| 714 |
+
for pname in range(0,len(line_hold)):
|
| 715 |
+
if 'SS' in line_hold.iat[pname,1]:
|
| 716 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 717 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 718 |
+
p_used.extend(sorted_lineup)
|
| 719 |
+
|
| 720 |
+
for pname in range(0,len(line_hold)):
|
| 721 |
+
if line_hold.iat[pname,1] == 'OF':
|
| 722 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 723 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 724 |
+
p_used.extend(sorted_lineup)
|
| 725 |
+
|
| 726 |
+
for pname in range(0,len(line_hold)):
|
| 727 |
+
if 'OF' in line_hold.iat[pname,1]:
|
| 728 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 729 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 730 |
+
p_used.extend(sorted_lineup)
|
| 731 |
+
|
| 732 |
+
for pname in range(0,len(line_hold)):
|
| 733 |
+
if line_hold.iat[pname,0] not in p_used:
|
| 734 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
| 735 |
+
p_used.extend(sorted_lineup)
|
| 736 |
+
|
| 737 |
+
lineup_final['sorted'] = sorted_lineup
|
| 738 |
+
lineup_final = lineup_final.drop(columns=['Names'])
|
| 739 |
+
lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
|
| 740 |
+
|
| 741 |
+
lineup_test = lineup_final
|
| 742 |
+
lineup_final = lineup_final.T
|
| 743 |
+
lineup_final['Cost'] = total_cost
|
| 744 |
+
lineup_final['Proj'] = total_proj
|
| 745 |
+
lineup_final['Own'] = total_own
|
| 746 |
+
|
| 747 |
+
lineup_test['Team'] = lineup_test['Names'].map(player_team)
|
| 748 |
+
lineup_test['Position'] = lineup_test['Names'].map(player_pos)
|
| 749 |
+
lineup_test['Salary'] = lineup_test['Names'].map(player_sal)
|
| 750 |
+
lineup_test['Proj'] = lineup_test['Names'].map(player_proj)
|
| 751 |
+
lineup_test['Own'] = lineup_test['Names'].map(player_own)
|
| 752 |
+
lineup_test = lineup_test.set_index('Names')
|
| 753 |
+
lineup_test.loc['Column_Total'] = lineup_test.sum(numeric_only=True, axis=0)
|
| 754 |
+
|
| 755 |
+
lineup_display.append(lineup_test)
|
| 756 |
+
|
| 757 |
+
with col2:
|
| 758 |
+
with st.container():
|
| 759 |
+
st.table(lineup_test)
|
| 760 |
+
|
| 761 |
+
max_proj = total_proj
|
| 762 |
+
max_own = total_own
|
| 763 |
+
|
| 764 |
+
check_list.append(total_proj)
|
| 765 |
+
|
| 766 |
+
portfolio = pd.concat([portfolio, lineup_final], ignore_index = True)
|
| 767 |
+
|
| 768 |
+
x += 1
|
| 769 |
+
|
| 770 |
+
if site_var5 == 'Draftkings':
|
| 771 |
+
portfolio.rename(columns={0: "SP1", 1: "SP2", 2: "C", 3: "1B", 4: "2B", 5: "3B", 6: "SS", 7: "OF1", 8: "OF2", 9: "OF3"}, inplace = True)
|
| 772 |
+
elif site_var5 == 'Fanduel':
|
| 773 |
+
portfolio.rename(columns={0: "SP1", 1: "C/1B", 2: "2B", 3: "3B", 4: "SS", 5: "OF1", 6: "OF2", 7: "OF3", 8: "UTIL"}, inplace = True)
|
| 774 |
+
portfolio = portfolio.dropna()
|
| 775 |
+
portfolio = portfolio.reset_index()
|
| 776 |
+
portfolio['Lineup_num'] = portfolio['index'] + 1
|
| 777 |
+
portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True)
|
| 778 |
+
portfolio = portfolio.set_index('Lineup')
|
| 779 |
+
portfolio = portfolio.drop(columns=['index'])
|
| 780 |
+
|
| 781 |
+
final_outcomes = portfolio
|
| 782 |
+
|
| 783 |
+
with optimize_container:
|
| 784 |
+
optimize_container = st.empty()
|
| 785 |
+
st.dataframe(portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 786 |
+
|
| 787 |
+
st.download_button(
|
| 788 |
+
label="Export Tables",
|
| 789 |
+
data=convert_df_to_csv(final_outcomes),
|
| 790 |
+
file_name='MLB_optimals_export.csv',
|
| 791 |
+
mime='text/csv',
|
| 792 |
+
)
|