Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,792 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pulp
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
import gspread
|
6 |
+
from itertools import combinations
|
7 |
+
|
8 |
+
st.set_page_config(layout="wide")
|
9 |
+
|
10 |
+
@st.cache_resource
|
11 |
+
def init_conn():
|
12 |
+
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
13 |
+
"https://www.googleapis.com/auth/drive"]
|
14 |
+
|
15 |
+
credentials = {
|
16 |
+
"type": "service_account",
|
17 |
+
"project_id": "sheets-api-connect-378620",
|
18 |
+
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
|
19 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
20 |
+
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
21 |
+
"client_id": "106625872877651920064",
|
22 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
23 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
24 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
25 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
26 |
+
}
|
27 |
+
|
28 |
+
gc = gspread.service_account_from_dict(credentials)
|
29 |
+
return gc
|
30 |
+
|
31 |
+
gc = init_conn()
|
32 |
+
|
33 |
+
wrong_acro = ['WSH', 'AZ']
|
34 |
+
right_acro = ['WAS', 'ARI']
|
35 |
+
|
36 |
+
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
37 |
+
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
38 |
+
|
39 |
+
team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
|
40 |
+
'5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
|
41 |
+
|
42 |
+
dk_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
|
43 |
+
fd_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
|
44 |
+
|
45 |
+
secondary_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
|
46 |
+
secondary_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
|
47 |
+
|
48 |
+
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
|
49 |
+
all_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
|
50 |
+
final_Proj = 0
|
51 |
+
|
52 |
+
@st.cache_resource(ttl=600)
|
53 |
+
def load_time():
|
54 |
+
sh = gc.open_by_url(dk_player_projections)
|
55 |
+
worksheet = sh.worksheet('Timestamp')
|
56 |
+
raw_stamp = worksheet.acell('a1').value
|
57 |
+
|
58 |
+
t_stamp = f"Last update was at {raw_stamp}"
|
59 |
+
|
60 |
+
return t_stamp
|
61 |
+
|
62 |
+
@st.cache_resource(ttl=600)
|
63 |
+
def load_dk_player_projections(URL):
|
64 |
+
sh = gc.open_by_url(URL)
|
65 |
+
worksheet = sh.worksheet('DK_Projections')
|
66 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
67 |
+
load_display.replace('', np.nan, inplace=True)
|
68 |
+
load_display = load_display.drop_duplicates(subset='Player')
|
69 |
+
raw_display = load_display.dropna(subset=['Median'])
|
70 |
+
|
71 |
+
return raw_display
|
72 |
+
|
73 |
+
@st.cache_resource(ttl=600)
|
74 |
+
def load_fd_player_projections(URL):
|
75 |
+
sh = gc.open_by_url(URL)
|
76 |
+
worksheet = sh.worksheet('FD_Projections')
|
77 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
78 |
+
load_display.replace('', np.nan, inplace=True)
|
79 |
+
load_display = load_display.drop_duplicates(subset='Player')
|
80 |
+
raw_display = load_display.dropna(subset=['Median'])
|
81 |
+
|
82 |
+
return raw_display
|
83 |
+
|
84 |
+
@st.cache_resource(ttl=600)
|
85 |
+
def set_slate_teams():
|
86 |
+
sh = gc.open_by_url(all_dk_player_projections)
|
87 |
+
worksheet = sh.worksheet('Site_Info')
|
88 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
89 |
+
|
90 |
+
for checkVar in range(len(wrong_acro)):
|
91 |
+
raw_display['FD Main'] = raw_display['FD Main'].replace(wrong_acro, right_acro)
|
92 |
+
|
93 |
+
for checkVar in range(len(wrong_acro)):
|
94 |
+
raw_display['FD Secondary'] = raw_display['FD Secondary'].replace(wrong_acro, right_acro)
|
95 |
+
|
96 |
+
for checkVar in range(len(wrong_acro)):
|
97 |
+
raw_display['FD Overall'] = raw_display['FD Overall'].replace(wrong_acro, right_acro)
|
98 |
+
|
99 |
+
return raw_display
|
100 |
+
|
101 |
+
@st.cache_resource(ttl=600)
|
102 |
+
def load_scoring_percentages(URL):
|
103 |
+
sh = gc.open_by_url(URL)
|
104 |
+
worksheet = sh.worksheet('Scoring_Percentages')
|
105 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
106 |
+
raw_display['8+ runs'] = raw_display['8+ runs'].str.replace('%', '').astype(float)/100
|
107 |
+
raw_display['Win Percentage'] = raw_display['Win Percentage'].str.replace('%', '').astype(float)/100
|
108 |
+
raw_display['DK LevX'] = raw_display['DK LevX'].str.replace('%', '').astype(float)/100
|
109 |
+
raw_display['FD LevX'] = raw_display['FD LevX'].str.replace('%', '').astype(float)/100
|
110 |
+
|
111 |
+
return raw_display
|
112 |
+
|
113 |
+
@st.cache_data
|
114 |
+
def convert_df_to_csv(df):
|
115 |
+
return df.to_csv().encode('utf-8')
|
116 |
+
|
117 |
+
t_stamp = load_time()
|
118 |
+
site_slates = set_slate_teams()
|
119 |
+
col1, col2 = st.columns([1, 5])
|
120 |
+
|
121 |
+
with col1:
|
122 |
+
st.info(t_stamp)
|
123 |
+
if st.button("Load/Reset Data", key='reset5'):
|
124 |
+
st.cache_data.clear()
|
125 |
+
raw_baselines = load_dk_player_projections(all_dk_player_projections)
|
126 |
+
|
127 |
+
team_baselines = load_scoring_percentages(all_dk_player_projections)
|
128 |
+
|
129 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'All Games'), key='slate_var1')
|
130 |
+
site_var5 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var5')
|
131 |
+
if slate_var1 == 'Main Slate':
|
132 |
+
if site_var5 == 'Draftkings':
|
133 |
+
slate_teams = site_slates['DK Main'].values.tolist()
|
134 |
+
raw_baselines = load_dk_player_projections(all_dk_player_projections)
|
135 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
136 |
+
team_baselines = load_scoring_percentages(all_dk_player_projections)
|
137 |
+
team_baselines = team_baselines[team_baselines['Names'].isin(slate_teams)]
|
138 |
+
Max_Rank = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Names'])
|
139 |
+
SP_remove = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Opp SP'])
|
140 |
+
team_baselines = team_baselines[~team_baselines['Names'].isin(Max_Rank)]
|
141 |
+
Max_Upside = list(team_baselines[team_baselines['8+ Rank'] == team_baselines['8+ Rank'].min()]['Names'])
|
142 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
143 |
+
elif site_var5 == 'Fanduel':
|
144 |
+
slate_teams = site_slates['FD Main'].values.tolist()
|
145 |
+
raw_baselines = load_fd_player_projections(all_fd_player_projections)
|
146 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
147 |
+
team_baselines = load_scoring_percentages(all_fd_player_projections)
|
148 |
+
team_baselines = team_baselines[team_baselines['Names'].isin(slate_teams)]
|
149 |
+
Max_Rank = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Names'])
|
150 |
+
SP_remove = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Opp SP'])
|
151 |
+
team_baselines = team_baselines[~team_baselines['Names'].isin(Max_Rank)]
|
152 |
+
Max_Upside = list(team_baselines[team_baselines['8+ Rank'] == team_baselines['8+ Rank'].min()]['Names'])
|
153 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
154 |
+
elif slate_var1 == 'Secondary Slate':
|
155 |
+
if site_var5 == 'Draftkings':
|
156 |
+
slate_teams = site_slates['DK Secondary'].values.tolist()
|
157 |
+
raw_baselines = load_dk_player_projections(all_dk_player_projections)
|
158 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
159 |
+
team_baselines = load_scoring_percentages(all_dk_player_projections)
|
160 |
+
team_baselines = team_baselines[team_baselines['Names'].isin(slate_teams)]
|
161 |
+
Max_Rank = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Names'])
|
162 |
+
SP_remove = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Opp SP'])
|
163 |
+
team_baselines = team_baselines[~team_baselines['Names'].isin(Max_Rank)]
|
164 |
+
Max_Upside = list(team_baselines[team_baselines['8+ Rank'] == team_baselines['8+ Rank'].min()]['Names'])
|
165 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
166 |
+
elif site_var5 == 'Fanduel':
|
167 |
+
slate_teams = site_slates['FD Secondary'].values.tolist()
|
168 |
+
raw_baselines = load_fd_player_projections(all_fd_player_projections)
|
169 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
170 |
+
team_baselines = load_scoring_percentages(all_fd_player_projections)
|
171 |
+
team_baselines = team_baselines[team_baselines['Names'].isin(slate_teams)]
|
172 |
+
Max_Rank = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Names'])
|
173 |
+
SP_remove = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Opp SP'])
|
174 |
+
team_baselines = team_baselines[~team_baselines['Names'].isin(Max_Rank)]
|
175 |
+
Max_Upside = list(team_baselines[team_baselines['8+ Rank'] == team_baselines['8+ Rank'].min()]['Names'])
|
176 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
177 |
+
elif slate_var1 == 'All Games':
|
178 |
+
if site_var5 == 'Draftkings':
|
179 |
+
slate_teams = site_slates['DK Overall'].values.tolist()
|
180 |
+
raw_baselines = load_dk_player_projections(all_dk_player_projections)
|
181 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
182 |
+
team_baselines = load_scoring_percentages(all_dk_player_projections)
|
183 |
+
team_baselines = team_baselines[team_baselines['Names'].isin(slate_teams)]
|
184 |
+
Max_Rank = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Names'])
|
185 |
+
SP_remove = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Opp SP'])
|
186 |
+
team_baselines = team_baselines[~team_baselines['Names'].isin(Max_Rank)]
|
187 |
+
Max_Upside = list(team_baselines[team_baselines['8+ Rank'] == team_baselines['8+ Rank'].min()]['Names'])
|
188 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
189 |
+
elif site_var5 == 'Fanduel':
|
190 |
+
slate_teams = site_slates['FD Overall'].values.tolist()
|
191 |
+
raw_baselines = load_fd_player_projections(all_fd_player_projections)
|
192 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
|
193 |
+
team_baselines = load_scoring_percentages(all_fd_player_projections)
|
194 |
+
team_baselines = team_baselines[team_baselines['Names'].isin(slate_teams)]
|
195 |
+
Max_Rank = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Names'])
|
196 |
+
SP_remove = list(team_baselines[team_baselines['Own Rank'] == team_baselines['Own Rank'].max()]['Opp SP'])
|
197 |
+
team_baselines = team_baselines[~team_baselines['Names'].isin(Max_Rank)]
|
198 |
+
Max_Upside = list(team_baselines[team_baselines['8+ Rank'] == team_baselines['8+ Rank'].min()]['Names'])
|
199 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
200 |
+
contest_var5 = st.selectbox("What contest type are you optimizing for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var5')
|
201 |
+
if contest_var5 == 'Small Field GPP':
|
202 |
+
opto_var5 = st.selectbox("Pivot optimal or Manual?", ('Pivot Optimal', 'Manual'), key='opto_var5')
|
203 |
+
if opto_var5 == "Manual":
|
204 |
+
stack_var5 = st.selectbox('Which teams are you stacking?', options = raw_baselines['Team'].unique(), key='stack_var5')
|
205 |
+
elif opto_var5 == "Pivot Optimal":
|
206 |
+
stack_var5 = Max_Rank[0]
|
207 |
+
elif contest_var5 == 'Large Field GPP':
|
208 |
+
opto_var5 = st.selectbox("Pivot optimal or Manual?", ('Pivot Optimal', 'Manual'), key='opto_var5')
|
209 |
+
if opto_var5 == "Manual":
|
210 |
+
stack_var5 = st.selectbox('Which team are you stacking?', options = raw_baselines['Team'].unique(), key='stack_var5')
|
211 |
+
ministack_var5 = st.selectbox('Which team is your secondary stack?', options = raw_baselines['Team'].unique(), key='ministack_var5')
|
212 |
+
elif opto_var5 == "Pivot Optimal":
|
213 |
+
stack_var5 = Max_Upside[0]
|
214 |
+
ministack_var5 = Max_Rank[0]
|
215 |
+
split_var5 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var5')
|
216 |
+
if split_var5 == 'Specific Games':
|
217 |
+
team_var5 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var5')
|
218 |
+
elif split_var5 == 'Full Slate Run':
|
219 |
+
team_var5 = raw_baselines.Team.values.tolist()
|
220 |
+
lock_var5 = st.multiselect("Are there any players you want to use in all lineups (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var5')
|
221 |
+
avoid_var5 = st.multiselect("Are there any players you want to remove from the pool (Drop Button)?", options = raw_baselines['Player'].unique(), key='avoid_var5')
|
222 |
+
linenum_var5 = st.number_input("How many lineups would you like to produce?", min_value = 1, max_value = 300, value = 20, step = 1, key='linenum_var5')
|
223 |
+
if site_var5 == 'Draftkings':
|
224 |
+
min_sal5 = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100, key='min_sal5')
|
225 |
+
max_sal5 = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100, key='max_sal5')
|
226 |
+
elif site_var5 == 'Fanduel':
|
227 |
+
min_sal5 = st.number_input('Min Salary', min_value = 25000, max_value = 34900, value = 34000, step = 100, key='min_sal5')
|
228 |
+
max_sal5 = st.number_input('Max Salary', min_value = 25000, max_value = 35000, value = 35000, step = 100, key='max_sal5')
|
229 |
+
|
230 |
+
|
231 |
+
with col2:
|
232 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].isin(team_var5)]
|
233 |
+
raw_baselines = raw_baselines[~raw_baselines['Player'].isin(avoid_var5)]
|
234 |
+
if contest_var5 == 'Small Field GPP':
|
235 |
+
if site_var5 == 'Draftkings':
|
236 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] == 'SP') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean() >= 0), raw_baselines['Own'] * (5 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean())/100) + raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean(), raw_baselines['Own'])
|
237 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] != 'SP') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean() >= 0), raw_baselines['Own'] * (10 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean())/100) + raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean(), raw_baselines['Own%'])
|
238 |
+
raw_baselines['Own%'] = np.where(raw_baselines['Own%'] > 75, 75, raw_baselines['Own%'])
|
239 |
+
elif site_var5 == 'Fanduel':
|
240 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] == 'P') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean() >= 0), raw_baselines['Own'] * (5 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean())/50) + raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean(), raw_baselines['Own'])
|
241 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] != 'P') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean() >= 0), raw_baselines['Own'] * (10 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean())/150) + raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean(), raw_baselines['Own%'])
|
242 |
+
raw_baselines['Own%'] = np.where(raw_baselines['Own%'] > 75, 75, raw_baselines['Own%'])
|
243 |
+
elif contest_var5 == 'Large Field GPP':
|
244 |
+
if site_var5 == 'Draftkings':
|
245 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] == 'SP') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean() >= 0), raw_baselines['Own'] * (2.5 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean())/100) + raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean(), raw_baselines['Own'])
|
246 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] != 'SP') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean() >= 0), raw_baselines['Own'] * (5 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean())/100) + raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean(), raw_baselines['Own%'])
|
247 |
+
raw_baselines['Own%'] = np.where(raw_baselines['Own%'] > 75, 75, raw_baselines['Own%'])
|
248 |
+
elif site_var5 == 'Fanduel':
|
249 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] == 'P') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean() >= 0), raw_baselines['Own'] * (2.5 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean())/50) + raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean(), raw_baselines['Own'])
|
250 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] != 'P') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean() >= 0), raw_baselines['Own'] * (5 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean())/150) + raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean(), raw_baselines['Own%'])
|
251 |
+
raw_baselines['Own%'] = np.where(raw_baselines['Own%'] > 75, 75, raw_baselines['Own%'])
|
252 |
+
elif contest_var5 == 'Cash':
|
253 |
+
if site_var5 == 'Draftkings':
|
254 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] == 'SP') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean() >= 0), raw_baselines['Own'] * (6 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean())/100) + raw_baselines.loc[raw_baselines['Position'] == 'SP', 'Own'].mean(), raw_baselines['Own'])
|
255 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] != 'SP') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean() >= 0), raw_baselines['Own'] * (11 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean())/100) + raw_baselines.loc[raw_baselines['Position'] != 'SP', 'Own'].mean(), raw_baselines['Own%'])
|
256 |
+
raw_baselines['Own%'] = np.where(raw_baselines['Own%'] > 75, 75, raw_baselines['Own%'])
|
257 |
+
elif site_var5 == 'Fanduel':
|
258 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] == 'P') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean() >= 0), raw_baselines['Own'] * (6 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean())/50) + raw_baselines.loc[raw_baselines['Position'] == 'P', 'Own'].mean(), raw_baselines['Own'])
|
259 |
+
raw_baselines['Own%'] = np.where((raw_baselines['Position'] != 'P') & (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean() >= 0), raw_baselines['Own'] * (11 * (raw_baselines['Own'] - raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean())/150) + raw_baselines.loc[raw_baselines['Position'] != 'P', 'Own'].mean(), raw_baselines['Own%'])
|
260 |
+
raw_baselines['Own%'] = np.where(raw_baselines['Own%'] > 75, 75, raw_baselines['Own%'])
|
261 |
+
raw_baselines = raw_baselines[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own%']]
|
262 |
+
raw_baselines.rename(columns={"Own%": "Own"}, inplace = True)
|
263 |
+
raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
|
264 |
+
raw_baselines['lock'] = np.where(raw_baselines['Player'].isin(lock_var5), 1, 0)
|
265 |
+
st.dataframe(raw_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
266 |
+
st.download_button(
|
267 |
+
label="Export Projections",
|
268 |
+
data=convert_df_to_csv(raw_baselines),
|
269 |
+
file_name='MLB_proj_export.csv',
|
270 |
+
mime='text/csv',
|
271 |
+
)
|
272 |
+
if st.button('Optimize'):
|
273 |
+
max_proj = 1000
|
274 |
+
max_own = 1000
|
275 |
+
total_proj = 0
|
276 |
+
total_own = 0
|
277 |
+
optimize_container = st.empty()
|
278 |
+
lineup_display = []
|
279 |
+
check_list = []
|
280 |
+
lineups = []
|
281 |
+
portfolio = pd.DataFrame()
|
282 |
+
x = 1
|
283 |
+
|
284 |
+
with st.spinner('Wait for it...'):
|
285 |
+
with optimize_container:
|
286 |
+
|
287 |
+
while x <= linenum_var5:
|
288 |
+
sorted_lineup = []
|
289 |
+
p_used = []
|
290 |
+
cvar = 0
|
291 |
+
firvar = 0
|
292 |
+
secvar = 0
|
293 |
+
thirvar = 0
|
294 |
+
|
295 |
+
raw_proj_file = raw_baselines
|
296 |
+
raw_flex_file = raw_proj_file.dropna(how='all')
|
297 |
+
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
|
298 |
+
flex_file = raw_flex_file
|
299 |
+
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
|
300 |
+
flex_file['name_var'] = flex_file['Player']
|
301 |
+
flex_file['lock'] = np.where(flex_file['Player'].isin(lock_var5), 1, 0)
|
302 |
+
player_ids = flex_file.index
|
303 |
+
|
304 |
+
overall_players = flex_file[['Player']]
|
305 |
+
overall_players['player_var_add'] = flex_file.index
|
306 |
+
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
|
307 |
+
|
308 |
+
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
|
309 |
+
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
|
310 |
+
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
|
311 |
+
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
|
312 |
+
|
313 |
+
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
|
314 |
+
player_team = dict(zip(flex_file['Player'], flex_file['Team']))
|
315 |
+
player_pos = dict(zip(flex_file['Player'], flex_file['Position']))
|
316 |
+
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
|
317 |
+
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
|
318 |
+
|
319 |
+
# obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
320 |
+
# total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
321 |
+
|
322 |
+
# obj_points_max = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
323 |
+
# obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
|
324 |
+
|
325 |
+
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
|
326 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal5
|
327 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal5
|
328 |
+
|
329 |
+
if site_var5 == 'Draftkings':
|
330 |
+
|
331 |
+
if contest_var5 == 'Cash':
|
332 |
+
for flex in flex_file['Team'].unique():
|
333 |
+
sub_idx = flex_file[(flex_file['Team'] == flex) & (flex_file['Position'] != 'SP')].index
|
334 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 5
|
335 |
+
elif contest_var5 == 'Small Field GPP':
|
336 |
+
for flex in flex_file['Team'].unique():
|
337 |
+
sub_idx = flex_file[(flex_file['Team'] == stack_var5) & (flex_file['Position'] != 'SP')].index
|
338 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
|
339 |
+
elif contest_var5 == 'Large Field GPP':
|
340 |
+
for flex in flex_file['Team'].unique():
|
341 |
+
sub_idx = flex_file[(flex_file['Team'] == stack_var5) & (flex_file['Position'] != 'SP')].index
|
342 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
|
343 |
+
for flex in flex_file['Team'].unique():
|
344 |
+
sub_idx = flex_file[(flex_file['Team'] == ministack_var5) & (flex_file['Position'] != 'SP')].index
|
345 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 3
|
346 |
+
|
347 |
+
for flex in flex_file['lock'].unique():
|
348 |
+
sub_idx = flex_file[flex_file['lock'] == 1].index
|
349 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var5)
|
350 |
+
|
351 |
+
for flex in flex_file['Position'].unique():
|
352 |
+
sub_idx = flex_file[flex_file['Position'] != "Var"].index
|
353 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 10
|
354 |
+
|
355 |
+
for flex in flex_file['Position'].unique():
|
356 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("SP")].index
|
357 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 2
|
358 |
+
|
359 |
+
for flex in flex_file['Position'].unique():
|
360 |
+
sub_idx = flex_file[flex_file['Position'] == "C"].index
|
361 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 1
|
362 |
+
|
363 |
+
for flex in flex_file['Position'].unique():
|
364 |
+
sub_idx = flex_file[flex_file['Position'] == "1B"].index
|
365 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 1
|
366 |
+
|
367 |
+
for flex in flex_file['Position'].unique():
|
368 |
+
sub_idx = flex_file[flex_file['Position'] == "2B"].index
|
369 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 1
|
370 |
+
|
371 |
+
for flex in flex_file['Position'].unique():
|
372 |
+
sub_idx = flex_file[flex_file['Position'] == "3B"].index
|
373 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 1
|
374 |
+
|
375 |
+
for flex in flex_file['Position'].unique():
|
376 |
+
sub_idx = flex_file[flex_file['Position'] == "SS"].index
|
377 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 1
|
378 |
+
|
379 |
+
for flex in flex_file['Position'].unique():
|
380 |
+
sub_idx = flex_file[flex_file['Position'] == "OF"].index
|
381 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
|
382 |
+
|
383 |
+
for flex in flex_file['Position'].unique():
|
384 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("C")].index
|
385 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
386 |
+
|
387 |
+
for flex in flex_file['Position'].unique():
|
388 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("1B")].index
|
389 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
390 |
+
|
391 |
+
for flex in flex_file['Position'].unique():
|
392 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("2B")].index
|
393 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
394 |
+
|
395 |
+
for flex in flex_file['Position'].unique():
|
396 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("3B")].index
|
397 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
398 |
+
|
399 |
+
for flex in flex_file['Position'].unique():
|
400 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("SS")].index
|
401 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
402 |
+
|
403 |
+
for flex in flex_file['Position'].unique():
|
404 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("OF")].index
|
405 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 3
|
406 |
+
|
407 |
+
for flex in flex_file['Position'].unique():
|
408 |
+
sub_idx = flex_file[(flex_file['Position'] == "SS") | (flex_file['Position'] == "3B")| (flex_file['Position'] == "3B/SS")].index
|
409 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
410 |
+
|
411 |
+
for flex in flex_file['Position'].unique():
|
412 |
+
sub_idx = flex_file[(flex_file['Position'] == "SS") | (flex_file['Position'] == "2B")| (flex_file['Position'] == "2B/SS")].index
|
413 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
414 |
+
|
415 |
+
for flex in flex_file['Position'].unique():
|
416 |
+
sub_idx = flex_file[(flex_file['Position'] == "2B") | (flex_file['Position'] == "3B")| (flex_file['Position'] == "2B/3B")].index
|
417 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
418 |
+
|
419 |
+
for flex in flex_file['Position'].unique():
|
420 |
+
sub_idx = flex_file[(flex_file['Position'] == "1B") | (flex_file['Position'] == "3B")| (flex_file['Position'] == "1B/3B")].index
|
421 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
422 |
+
|
423 |
+
for flex in flex_file['Position'].unique():
|
424 |
+
sub_idx = flex_file[(flex_file['Position'] == "1B") | (flex_file['Position'] == "C")| (flex_file['Position'] == "1B/C")].index
|
425 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
426 |
+
|
427 |
+
for flex in flex_file['Position'].unique():
|
428 |
+
sub_idx = flex_file[(flex_file['Position'] == "SS") | (flex_file['Position'] == "OF")| (flex_file['Position'] == "SS/OF")].index
|
429 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
|
430 |
+
|
431 |
+
elif site_var5 == 'Fanduel':
|
432 |
+
|
433 |
+
if contest_var5 == 'Cash':
|
434 |
+
for flex in flex_file['Team'].unique():
|
435 |
+
sub_idx = flex_file[(flex_file['Team'] == flex) & (flex_file['Position'] != 'P')].index
|
436 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
|
437 |
+
elif contest_var5 == 'Small Field GPP':
|
438 |
+
for flex in flex_file['Team'].unique():
|
439 |
+
sub_idx = flex_file[(flex_file['Team'] == stack_var5) & (flex_file['Position'] != 'P')].index
|
440 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 4
|
441 |
+
elif contest_var5 == 'Large Field GPP':
|
442 |
+
for flex in flex_file['Team'].unique():
|
443 |
+
sub_idx = flex_file[(flex_file['Team'] == stack_var5)].index
|
444 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 4
|
445 |
+
for flex in flex_file['Team'].unique():
|
446 |
+
sub_idx = flex_file[(flex_file['Team'] == ministack_var5)].index
|
447 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 4
|
448 |
+
|
449 |
+
for flex in flex_file['lock'].unique():
|
450 |
+
sub_idx = flex_file[flex_file['lock'] == 1].index
|
451 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var5)
|
452 |
+
|
453 |
+
for flex in flex_file['Position'].unique():
|
454 |
+
sub_idx = flex_file[flex_file['Position'] != "Var"].index
|
455 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 9
|
456 |
+
|
457 |
+
for flex in flex_file['Position'].unique():
|
458 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("P")].index
|
459 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
|
460 |
+
|
461 |
+
for flex in flex_file['Position'].unique():
|
462 |
+
sub_idx = flex_file[(flex_file['Position'] == "C") | (flex_file['Position'] == "1B")].index
|
463 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
464 |
+
|
465 |
+
for flex in flex_file['Position'].unique():
|
466 |
+
sub_idx = flex_file[(flex_file['Position'] == "C") | (flex_file['Position'] == "1B") | (flex_file['Position'] == "OF")].index
|
467 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 5
|
468 |
+
|
469 |
+
for flex in flex_file['Position'].unique():
|
470 |
+
sub_idx = flex_file[flex_file['Position'] == "2B"].index
|
471 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
472 |
+
|
473 |
+
for flex in flex_file['Position'].unique():
|
474 |
+
sub_idx = flex_file[flex_file['Position'] == "3B"].index
|
475 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
476 |
+
|
477 |
+
for flex in flex_file['Position'].unique():
|
478 |
+
sub_idx = flex_file[flex_file['Position'] == "SS"].index
|
479 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
|
480 |
+
|
481 |
+
for flex in flex_file['Position'].unique():
|
482 |
+
sub_idx = flex_file[flex_file['Position'] == "OF"].index
|
483 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
|
484 |
+
|
485 |
+
for flex in flex_file['Position'].unique():
|
486 |
+
sub_idx = flex_file[(flex_file['Position'] == "OF") | (flex_file['Position'] == "C")].index
|
487 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 5
|
488 |
+
|
489 |
+
for flex in flex_file['Position'].unique():
|
490 |
+
sub_idx = flex_file[(flex_file['Position'] == "OF") | (flex_file['Position'] == "1B")].index
|
491 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 5
|
492 |
+
|
493 |
+
for flex in flex_file['Position'].unique():
|
494 |
+
sub_idx = flex_file[(flex_file['Position'].str.contains("C")) | (flex_file['Position'].str.contains("1B"))].index
|
495 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
496 |
+
|
497 |
+
for flex in flex_file['Position'].unique():
|
498 |
+
sub_idx = flex_file[(flex_file['Position'].str.contains("2B")) | (flex_file['Position'].str.contains("SS"))].index
|
499 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
|
500 |
+
|
501 |
+
for flex in flex_file['Position'].unique():
|
502 |
+
sub_idx = flex_file[(flex_file['Position'] == "C") | (flex_file['Position'] == "SS")].index
|
503 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
|
504 |
+
|
505 |
+
for flex in flex_file['Position'].unique():
|
506 |
+
sub_idx = flex_file[(flex_file['Position'] == "SS") | (flex_file['Position'] == "2B") | (flex_file['Position'] == "OF") | (flex_file['Position'] == "2B/SS/OF")].index
|
507 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 5
|
508 |
+
|
509 |
+
for flex in flex_file['Position'].unique():
|
510 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("2B")].index
|
511 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
512 |
+
|
513 |
+
for flex in flex_file['Position'].unique():
|
514 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("3B")].index
|
515 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
516 |
+
|
517 |
+
for flex in flex_file['Position'].unique():
|
518 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("SS")].index
|
519 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
|
520 |
+
|
521 |
+
for flex in flex_file['Position'].unique():
|
522 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("OF")].index
|
523 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 3
|
524 |
+
|
525 |
+
for flex in flex_file['Position'].unique():
|
526 |
+
sub_idx = flex_file[flex_file['Position'].str.contains("OF")].index
|
527 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
|
528 |
+
|
529 |
+
player_count = []
|
530 |
+
player_trim = []
|
531 |
+
lineup_list = []
|
532 |
+
|
533 |
+
if contest_var5 == 'Cash':
|
534 |
+
obj_points = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
|
535 |
+
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
536 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_own - .001
|
537 |
+
elif contest_var5 != 'Cash':
|
538 |
+
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
539 |
+
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
540 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_proj - .01
|
541 |
+
|
542 |
+
total_score.solve()
|
543 |
+
for v in total_score.variables():
|
544 |
+
if v.varValue > 0:
|
545 |
+
lineup_list.append(v.name)
|
546 |
+
df = pd.DataFrame(lineup_list)
|
547 |
+
df['Names'] = df[0].map(player_match)
|
548 |
+
df['Cost'] = df['Names'].map(player_sal)
|
549 |
+
df['Proj'] = df['Names'].map(player_proj)
|
550 |
+
df['Own'] = df['Names'].map(player_own)
|
551 |
+
total_cost = sum(df['Cost'])
|
552 |
+
total_own = sum(df['Own'])
|
553 |
+
total_proj = sum(df['Proj'])
|
554 |
+
lineup_raw = pd.DataFrame(lineup_list)
|
555 |
+
lineup_raw['Names'] = lineup_raw[0].map(player_match)
|
556 |
+
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
|
557 |
+
lineup_final = lineup_raw.sort_values(by=['value'])
|
558 |
+
del lineup_final[lineup_final.columns[0]]
|
559 |
+
del lineup_final[lineup_final.columns[1]]
|
560 |
+
lineup_final = lineup_final.reset_index(drop=True)
|
561 |
+
|
562 |
+
if site_var5 == 'Draftkings':
|
563 |
+
line_hold = lineup_final[['Names']]
|
564 |
+
line_hold['pos'] = line_hold['Names'].map(player_pos)
|
565 |
+
|
566 |
+
for pname in range(0,len(line_hold)):
|
567 |
+
if line_hold.iat[pname,1] == 'SP':
|
568 |
+
if line_hold.iat[pname,0] not in p_used:
|
569 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
570 |
+
p_used.extend(sorted_lineup)
|
571 |
+
|
572 |
+
for pname in range(0,len(line_hold)):
|
573 |
+
if line_hold.iat[pname,1] == 'C':
|
574 |
+
if line_hold.iat[pname,0] not in p_used:
|
575 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
576 |
+
cvar = 1
|
577 |
+
p_used.extend(sorted_lineup)
|
578 |
+
|
579 |
+
if cvar != 1:
|
580 |
+
for pname in range(0,len(line_hold)):
|
581 |
+
if 'C' in line_hold.iat[pname,1]:
|
582 |
+
if line_hold.iat[pname,0] not in p_used:
|
583 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
584 |
+
p_used.extend(sorted_lineup)
|
585 |
+
|
586 |
+
for pname in range(0,len(line_hold)):
|
587 |
+
if line_hold.iat[pname,1] == '1B':
|
588 |
+
if line_hold.iat[pname,0] not in p_used:
|
589 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
590 |
+
firvar = 1
|
591 |
+
p_used.extend(sorted_lineup)
|
592 |
+
|
593 |
+
if firvar != 1:
|
594 |
+
for pname in range(0,len(line_hold)):
|
595 |
+
if '1B' in line_hold.iat[pname,1]:
|
596 |
+
if line_hold.iat[pname,0] not in p_used:
|
597 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
598 |
+
p_used.extend(sorted_lineup)
|
599 |
+
|
600 |
+
for pname in range(0,len(line_hold)):
|
601 |
+
if line_hold.iat[pname,1] == '2B':
|
602 |
+
if line_hold.iat[pname,0] not in p_used:
|
603 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
604 |
+
secvar = 1
|
605 |
+
p_used.extend(sorted_lineup)
|
606 |
+
|
607 |
+
if secvar != 1:
|
608 |
+
for pname in range(0,len(line_hold)):
|
609 |
+
if '2B' in line_hold.iat[pname,1]:
|
610 |
+
if line_hold.iat[pname,0] not in p_used:
|
611 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
612 |
+
p_used.extend(sorted_lineup)
|
613 |
+
|
614 |
+
for pname in range(0,len(line_hold)):
|
615 |
+
if line_hold.iat[pname,1] == '3B':
|
616 |
+
if line_hold.iat[pname,0] not in p_used:
|
617 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
618 |
+
thirvar = 1
|
619 |
+
p_used.extend(sorted_lineup)
|
620 |
+
|
621 |
+
if thirvar != 1:
|
622 |
+
for pname in range(0,len(line_hold)):
|
623 |
+
if '3B' in line_hold.iat[pname,1]:
|
624 |
+
if line_hold.iat[pname,0] not in p_used:
|
625 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
626 |
+
p_used.extend(sorted_lineup)
|
627 |
+
|
628 |
+
for pname in range(0,len(line_hold)):
|
629 |
+
if line_hold.iat[pname,1] == 'SS':
|
630 |
+
if line_hold.iat[pname,0] not in p_used:
|
631 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
632 |
+
p_used.extend(sorted_lineup)
|
633 |
+
|
634 |
+
for pname in range(0,len(line_hold)):
|
635 |
+
if 'SS' in line_hold.iat[pname,1]:
|
636 |
+
if line_hold.iat[pname,0] not in p_used:
|
637 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
638 |
+
p_used.extend(sorted_lineup)
|
639 |
+
|
640 |
+
for pname in range(0,len(line_hold)):
|
641 |
+
if line_hold.iat[pname,1] == 'OF':
|
642 |
+
if line_hold.iat[pname,0] not in p_used:
|
643 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
644 |
+
p_used.extend(sorted_lineup)
|
645 |
+
|
646 |
+
for pname in range(0,len(line_hold)):
|
647 |
+
if 'OF' in line_hold.iat[pname,1]:
|
648 |
+
if line_hold.iat[pname,0] not in p_used:
|
649 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
650 |
+
p_used.extend(sorted_lineup)
|
651 |
+
|
652 |
+
lineup_final['sorted'] = sorted_lineup
|
653 |
+
lineup_final = lineup_final.drop(columns=['Names'])
|
654 |
+
lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
|
655 |
+
|
656 |
+
elif site_var5 == 'Fanduel':
|
657 |
+
line_hold = lineup_final[['Names']]
|
658 |
+
line_hold['pos'] = line_hold['Names'].map(player_pos)
|
659 |
+
|
660 |
+
for pname in range(0,len(line_hold)):
|
661 |
+
if line_hold.iat[pname,1] == 'P':
|
662 |
+
if line_hold.iat[pname,0] not in p_used:
|
663 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
664 |
+
p_used.extend(sorted_lineup)
|
665 |
+
|
666 |
+
for pname in range(0,len(line_hold)):
|
667 |
+
if line_hold.iat[pname,1] == 'C' or line_hold.iat[pname,1] == '1B':
|
668 |
+
if line_hold.iat[pname,0] not in p_used:
|
669 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
670 |
+
cvar = 1
|
671 |
+
p_used.extend(sorted_lineup)
|
672 |
+
|
673 |
+
if cvar != 1:
|
674 |
+
for pname in range(0,len(line_hold)):
|
675 |
+
if line_hold.iat[pname,1] in ['C', '1B']:
|
676 |
+
if line_hold.iat[pname,0] not in p_used:
|
677 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
678 |
+
p_used.extend(sorted_lineup)
|
679 |
+
|
680 |
+
for pname in range(0,len(line_hold)):
|
681 |
+
if line_hold.iat[pname,1] == '2B':
|
682 |
+
if line_hold.iat[pname,0] not in p_used:
|
683 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
684 |
+
secvar = 1
|
685 |
+
p_used.extend(sorted_lineup)
|
686 |
+
|
687 |
+
if secvar != 1:
|
688 |
+
for pname in range(0,len(line_hold)):
|
689 |
+
if '2B' in line_hold.iat[pname,1]:
|
690 |
+
if line_hold.iat[pname,0] not in p_used:
|
691 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
692 |
+
p_used.extend(sorted_lineup)
|
693 |
+
|
694 |
+
for pname in range(0,len(line_hold)):
|
695 |
+
if line_hold.iat[pname,1] == '3B':
|
696 |
+
if line_hold.iat[pname,0] not in p_used:
|
697 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
698 |
+
thirvar = 1
|
699 |
+
p_used.extend(sorted_lineup)
|
700 |
+
|
701 |
+
if thirvar != 1:
|
702 |
+
for pname in range(0,len(line_hold)):
|
703 |
+
if '3B' in line_hold.iat[pname,1]:
|
704 |
+
if line_hold.iat[pname,0] not in p_used:
|
705 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
706 |
+
p_used.extend(sorted_lineup)
|
707 |
+
|
708 |
+
for pname in range(0,len(line_hold)):
|
709 |
+
if line_hold.iat[pname,1] == 'SS':
|
710 |
+
if line_hold.iat[pname,0] not in p_used:
|
711 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
712 |
+
p_used.extend(sorted_lineup)
|
713 |
+
|
714 |
+
for pname in range(0,len(line_hold)):
|
715 |
+
if 'SS' in line_hold.iat[pname,1]:
|
716 |
+
if line_hold.iat[pname,0] not in p_used:
|
717 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
718 |
+
p_used.extend(sorted_lineup)
|
719 |
+
|
720 |
+
for pname in range(0,len(line_hold)):
|
721 |
+
if line_hold.iat[pname,1] == 'OF':
|
722 |
+
if line_hold.iat[pname,0] not in p_used:
|
723 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
724 |
+
p_used.extend(sorted_lineup)
|
725 |
+
|
726 |
+
for pname in range(0,len(line_hold)):
|
727 |
+
if 'OF' in line_hold.iat[pname,1]:
|
728 |
+
if line_hold.iat[pname,0] not in p_used:
|
729 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
730 |
+
p_used.extend(sorted_lineup)
|
731 |
+
|
732 |
+
for pname in range(0,len(line_hold)):
|
733 |
+
if line_hold.iat[pname,0] not in p_used:
|
734 |
+
sorted_lineup.append(line_hold.iat[pname,0])
|
735 |
+
p_used.extend(sorted_lineup)
|
736 |
+
|
737 |
+
lineup_final['sorted'] = sorted_lineup
|
738 |
+
lineup_final = lineup_final.drop(columns=['Names'])
|
739 |
+
lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
|
740 |
+
|
741 |
+
lineup_test = lineup_final
|
742 |
+
lineup_final = lineup_final.T
|
743 |
+
lineup_final['Cost'] = total_cost
|
744 |
+
lineup_final['Proj'] = total_proj
|
745 |
+
lineup_final['Own'] = total_own
|
746 |
+
|
747 |
+
lineup_test['Team'] = lineup_test['Names'].map(player_team)
|
748 |
+
lineup_test['Position'] = lineup_test['Names'].map(player_pos)
|
749 |
+
lineup_test['Salary'] = lineup_test['Names'].map(player_sal)
|
750 |
+
lineup_test['Proj'] = lineup_test['Names'].map(player_proj)
|
751 |
+
lineup_test['Own'] = lineup_test['Names'].map(player_own)
|
752 |
+
lineup_test = lineup_test.set_index('Names')
|
753 |
+
lineup_test.loc['Column_Total'] = lineup_test.sum(numeric_only=True, axis=0)
|
754 |
+
|
755 |
+
lineup_display.append(lineup_test)
|
756 |
+
|
757 |
+
with col2:
|
758 |
+
with st.container():
|
759 |
+
st.table(lineup_test)
|
760 |
+
|
761 |
+
max_proj = total_proj
|
762 |
+
max_own = total_own
|
763 |
+
|
764 |
+
check_list.append(total_proj)
|
765 |
+
|
766 |
+
portfolio = pd.concat([portfolio, lineup_final], ignore_index = True)
|
767 |
+
|
768 |
+
x += 1
|
769 |
+
|
770 |
+
if site_var5 == 'Draftkings':
|
771 |
+
portfolio.rename(columns={0: "SP1", 1: "SP2", 2: "C", 3: "1B", 4: "2B", 5: "3B", 6: "SS", 7: "OF1", 8: "OF2", 9: "OF3"}, inplace = True)
|
772 |
+
elif site_var5 == 'Fanduel':
|
773 |
+
portfolio.rename(columns={0: "SP1", 1: "C/1B", 2: "2B", 3: "3B", 4: "SS", 5: "OF1", 6: "OF2", 7: "OF3", 8: "UTIL"}, inplace = True)
|
774 |
+
portfolio = portfolio.dropna()
|
775 |
+
portfolio = portfolio.reset_index()
|
776 |
+
portfolio['Lineup_num'] = portfolio['index'] + 1
|
777 |
+
portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True)
|
778 |
+
portfolio = portfolio.set_index('Lineup')
|
779 |
+
portfolio = portfolio.drop(columns=['index'])
|
780 |
+
|
781 |
+
final_outcomes = portfolio
|
782 |
+
|
783 |
+
with optimize_container:
|
784 |
+
optimize_container = st.empty()
|
785 |
+
st.dataframe(portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
786 |
+
|
787 |
+
st.download_button(
|
788 |
+
label="Export Tables",
|
789 |
+
data=convert_df_to_csv(final_outcomes),
|
790 |
+
file_name='MLB_optimals_export.csv',
|
791 |
+
mime='text/csv',
|
792 |
+
)
|