Multichem commited on
Commit
ffe7479
·
verified ·
1 Parent(s): 624e45b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +392 -0
app.py ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pulp
2
+ import numpy as np
3
+ import pandas as pd
4
+ import streamlit as st
5
+ import gspread
6
+ from itertools import combinations
7
+
8
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
9
+ "https://www.googleapis.com/auth/drive"]
10
+
11
+ credentials = {
12
+ "type": "service_account",
13
+ "project_id": "sheets-api-connect-378620",
14
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
15
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
16
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
17
+ "client_id": "106625872877651920064",
18
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
19
+ "token_uri": "https://oauth2.googleapis.com/token",
20
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
21
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
22
+ }
23
+
24
+ gc = gspread.service_account_from_dict(credentials)
25
+
26
+ st.set_page_config(layout="wide")
27
+
28
+ wrong_acro = ['WSH', 'AZ', 'WSN', 'TBR', 'KCR', 'SDP', 'CHW', 'SFG']
29
+ right_acro = ['WAS', 'ARI', 'WAS', 'TB', 'KC', 'SD', 'CWS', 'SF']
30
+
31
+ SP_format = {'K%': '{:.2%}', 'BB%': '{:.2%}'}
32
+ SP_league_format = ['Strikeoutper', 'Walkper','xBA', 'xSLG', 'BABIP', 'xwOBA', 'AVG', 'True_AVG']
33
+ BP_league_format = ['Strikeoutper', 'Walkper','xBA', 'xSLG', 'BABIP', 'xwOBA', 'AVG', 'HWS Ratio']
34
+ hitter_format = {'K%': '{:.2%}', 'xHR/PA': '{:.2%}', 'Event/PA': '{:.2%}'}
35
+ offense_format = {'8+ For': '{:.2%}', '8+ For L5': '{:.2%}', '8+ For L10': '{:.2%}', 'Trending 8+ For': '{:.2%}'}
36
+ defense_format = {'8+ Allowed': '{:.2%}', '8+ Allowed L5': '{:.2%}', '8+ Allowed L10': '{:.2%}', 'Trending 8+ Allowed': '{:.2%}'}
37
+ R2_format = {'R2_to_Opp_szn': '{:.2%}', 'R2_to_Opp_sample': '{:.2%}', 'R2_to_Opp L5': '{:.2%}', 'R2_to_Opp L10': '{:.2%}', 'R2_to_Opp_Trend': '{:.2%}'}
38
+
39
+ data_hold = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
40
+
41
+ @st.cache_data
42
+ def load_time():
43
+ sh = gc.open_by_url(data_hold)
44
+ worksheet = sh.worksheet('Timestamp')
45
+ raw_stamp = worksheet.acell('a1').value
46
+
47
+ t_stamp = f"Last update was at {raw_stamp}"
48
+
49
+ return t_stamp
50
+
51
+ @st.cache_data
52
+ def load_table(URL, specific_tab):
53
+ sh = gc.open_by_url(URL)
54
+ worksheet = sh.worksheet(specific_tab)
55
+ load_display = pd.DataFrame(worksheet.get_all_records())
56
+
57
+ return load_display
58
+
59
+ @st.cache_data
60
+ def True_AVG_Splits_load():
61
+
62
+ sh = gc.open_by_url(data_hold)
63
+ worksheet = sh.worksheet('True_AVG_Split')
64
+ pitcher_stats = pd.DataFrame(worksheet.get_all_records())
65
+ pitcher_stats.apply(pd.to_numeric, errors='ignore')
66
+ pitcher_stats = pitcher_stats.drop(columns=['HWSr (LHH)', 'HWSr (RHH)', 'HWSr (Overall)', 'Weighted HWSr',])
67
+ pitcher_stats = pitcher_stats.sort_values(by='Weighted True AVG', ascending=True)
68
+
69
+ return pitcher_stats
70
+
71
+ @st.cache_data
72
+ def HWSr_Splits_load():
73
+
74
+ sh = gc.open_by_url(data_hold)
75
+ worksheet = sh.worksheet('True_AVG_Split')
76
+ pitcher_stats = pd.DataFrame(worksheet.get_all_records())
77
+ pitcher_stats.apply(pd.to_numeric, errors='ignore')
78
+ pitcher_stats = pitcher_stats.drop(columns=['True AVG (LHH)', 'True AVG (RHH)', 'True AVG (Overall)', 'Weighted True AVG',])
79
+ pitcher_stats = pitcher_stats.sort_values(by='Weighted HWSr', ascending=True)
80
+
81
+ return pitcher_stats
82
+
83
+ @st.cache_data
84
+ def SP_Slate_Stats_load():
85
+
86
+ sh = gc.open_by_url(data_hold)
87
+ worksheet = sh.worksheet('Starting_Pitchers')
88
+ pitcher_stats = pd.DataFrame(worksheet.get_all_records())
89
+ pitcher_stats.apply(pd.to_numeric, errors='ignore')
90
+ pitcher_stats = pitcher_stats.drop(columns=['Starting'])
91
+ pitcher_stats = pitcher_stats.sort_values(by='True AVG', ascending=True)
92
+
93
+ return pitcher_stats
94
+
95
+ @st.cache_data
96
+ def RHH_load():
97
+
98
+ sh = gc.open_by_url(data_hold)
99
+ worksheet = sh.worksheet('Pitcher_Data (RHH)')
100
+ pitcher_stats = pd.DataFrame(worksheet.get_all_records())
101
+ pitcher_stats.apply(pd.to_numeric, errors='ignore')
102
+ pitcher_stats = pitcher_stats.loc[pitcher_stats['Playing'] == 1]
103
+ pitcher_stats = pitcher_stats.drop(columns=['Playing', 'Avg IP'])
104
+ pitcher_stats = pitcher_stats.sort_values(by='True AVG', ascending=True)
105
+
106
+ return pitcher_stats
107
+
108
+ @st.cache_data
109
+ def LHH_load():
110
+
111
+ sh = gc.open_by_url(data_hold)
112
+ worksheet = sh.worksheet('Pitcher_Data (LHH)')
113
+ pitcher_stats = pd.DataFrame(worksheet.get_all_records())
114
+ pitcher_stats.apply(pd.to_numeric, errors='ignore')
115
+ pitcher_stats = pitcher_stats.loc[pitcher_stats['Playing'] == 1]
116
+ pitcher_stats = pitcher_stats.drop(columns=['Playing', 'Avg IP'])
117
+ pitcher_stats = pitcher_stats.sort_values(by='True AVG', ascending=True)
118
+
119
+ return pitcher_stats
120
+
121
+ @st.cache_data
122
+ def Full_Stats_load():
123
+
124
+ sh = gc.open_by_url(data_hold)
125
+ worksheet = sh.worksheet('Pitcher_xData')
126
+ pitcher_stats = pd.DataFrame(worksheet.get_all_records())
127
+ pitcher_stats.apply(pd.to_numeric, errors='ignore')
128
+ pitcher_stats = pitcher_stats[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'xBA', 'True_AVG', 'xHRs']]
129
+ pitcher_stats = pitcher_stats.sort_values(by='PA', ascending=False)
130
+ pitcher_stats = pitcher_stats.drop_duplicates(subset='Player')
131
+ pitcher_stats = pitcher_stats.set_index('Player')
132
+
133
+ return pitcher_stats
134
+
135
+ @st.cache_data
136
+ def Full_RHH_load():
137
+
138
+ sh = gc.open_by_url(data_hold)
139
+ worksheet = sh.worksheet('Pitcher_xData_RHH')
140
+ pitcher_stats = pd.DataFrame(worksheet.get_all_records())
141
+ pitcher_stats.apply(pd.to_numeric, errors='ignore')
142
+ pitcher_stats = pitcher_stats[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'xBA', 'True_AVG', 'xHRs']]
143
+ pitcher_stats = pitcher_stats.sort_values(by='PA', ascending=False)
144
+ pitcher_stats = pitcher_stats.drop_duplicates(subset='Player')
145
+ pitcher_stats = pitcher_stats.set_index('Player')
146
+
147
+ return pitcher_stats
148
+
149
+ @st.cache_data
150
+ def Full_LHH_load():
151
+
152
+ sh = gc.open_by_url(data_hold)
153
+ worksheet = sh.worksheet('Pitcher_xData_LHH')
154
+ pitcher_stats = pd.DataFrame(worksheet.get_all_records())
155
+ pitcher_stats.apply(pd.to_numeric, errors='ignore')
156
+ pitcher_stats = pitcher_stats[['Player', 'PA', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeoutper', 'Strikeouts', 'Walkper', 'Walks', 'xSLG', 'xwOBA', 'BABIP', 'AVG', 'xBA', 'True_AVG', 'xHRs']]
157
+ pitcher_stats = pitcher_stats.sort_values(by='PA', ascending=False)
158
+ pitcher_stats = pitcher_stats.drop_duplicates(subset='Player')
159
+ pitcher_stats = pitcher_stats.set_index('Player')
160
+
161
+ return pitcher_stats
162
+
163
+ @st.cache_data
164
+ def Bullpen_Data_load():
165
+
166
+ sh = gc.open_by_url(data_hold)
167
+ worksheet = sh.worksheet('Bullpen_xData')
168
+ pitcher_stats = pd.DataFrame(worksheet.get_all_records())
169
+ pitcher_stats.apply(pd.to_numeric, errors='ignore')
170
+ for checkVar in range(len(wrong_acro)):
171
+ pitcher_stats['Names'] = pitcher_stats['Names'].replace(wrong_acro, right_acro)
172
+ pitcher_stats = pitcher_stats.sort_values(by='xSLG', ascending=False)
173
+
174
+ return pitcher_stats
175
+
176
+ @st.cache_data
177
+ def convert_df_to_csv(df):
178
+ return df.to_csv().encode('utf-8')
179
+
180
+ t_stamp = load_time()
181
+
182
+ raw_baselines = load_table(data_hold, 'Starting_Pitchers')
183
+
184
+ pitcher_stats = load_table(data_hold, 'Starting_Pitchers')
185
+
186
+ hitter_stats = load_table(data_hold, 'DK_Slate_hitters')
187
+ hitter_stats.replace('', np.nan, inplace=True)
188
+ hitter_stats.apply(pd.to_numeric, errors='ignore')
189
+ hitter_stats = hitter_stats.dropna(subset=['Order'])
190
+ hitter_stats = hitter_stats.dropna(subset=['Opp_SP'])
191
+
192
+ macro_tables = load_table(data_hold, 'Macro_Trending')
193
+
194
+ col1, col2 = st.columns([1, 5])
195
+
196
+ with col1:
197
+ st.info(t_stamp)
198
+ if st.button("Load/Reset Data", key='reset1'):
199
+ st.cache_data.clear()
200
+ t_stamp = load_time()
201
+
202
+ pitcher_stats = load_table(data_hold, 'Starting_Pitchers')
203
+ hitter_stats = load_table(data_hold, 'DK_Slate_hitters')
204
+ hitter_stats.replace('', np.nan, inplace=True)
205
+ hitter_stats = hitter_stats.dropna(subset=['Order'])
206
+ stat_type_var1 = st.radio("Are you looking at pitchers or hitters?", ('Pitchers', 'Hitters'), key='stat_type_var1')
207
+ if stat_type_var1 == 'Pitchers':
208
+ stat_var1 = st.radio("What sheets would you like to view?", ('True AVG Splits', 'HWSr Splits', 'Current Slate Stats', 'Stats vs. RHH', 'Stats vs. LHH', 'Full League Stats', 'Full League Stats vs. RHH', 'Full League Stats vs. LHH', 'Bullpen Data'), key='stat_var1')
209
+ sp_split1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='sp_split1')
210
+ if sp_split1 == 'Specific Games':
211
+ sp_var1 = st.multiselect('Which teams would you like to include in the Table?', options = hitter_stats['Team'].unique(), key='sp_var1')
212
+ elif sp_split1 == 'Full Slate Run':
213
+ sp_var1 = hitter_stats.Team.values.tolist()
214
+ elif stat_type_var1 == 'Hitters':
215
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
216
+ if site_var1 == "Draftkings":
217
+ hitter_stats = load_table(data_hold, 'DK_Slate_hitters')
218
+ hitter_stats.replace('', np.nan, inplace=True)
219
+ hitter_stats = hitter_stats.dropna(subset=['Order'])
220
+ elif site_var1 == "Fanduel":
221
+ hitter_stats = load_table(data_hold, 'FD_Slate_Hitters')
222
+ hitter_stats.replace('', np.nan, inplace=True)
223
+ hitter_stats = hitter_stats.dropna(subset=['Order'])
224
+ stat_var1 = st.radio("What sheets would you like to view?", options = ['Current Slate Player Stats', 'Current Slate Team Stats', 'Team Trending Stats (Offense)', 'Team Trending Stats (Defense)', 'Team Trending Stats (Matchup ELO)'], key='stat_var1')
225
+ split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
226
+ pos_split1 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
227
+ if pos_split1 == 'Specific Positions':
228
+ pos_var1 = st.multiselect('What Positions would you like to view?', options = ['C', '1B', '2B', '3B', 'SS', 'OF'])
229
+ elif pos_split1 == 'All Positions':
230
+ pos_var1 = 'All'
231
+ if split_var1 == 'Specific Games':
232
+ team_var1 = st.multiselect('Which teams would you like to include in the Table?', options = hitter_stats['Team'].unique(), key='team_var1')
233
+ elif split_var1 == 'Full Slate Run':
234
+ team_var1 = hitter_stats.Team.values.tolist()
235
+
236
+ TA_table = True_AVG_Splits_load()
237
+ HWS_table = HWSr_Splits_load()
238
+ SP_slate_table = SP_Slate_Stats_load()
239
+ RHH_table = RHH_load()
240
+ LHH_table = LHH_load()
241
+ Full_stats_table = Full_Stats_load()
242
+ Full_RHH_table = Full_RHH_load()
243
+ Full_LHH_table = Full_LHH_load()
244
+ Bullpen_table = Bullpen_Data_load()
245
+
246
+ with col2:
247
+ if stat_type_var1 == 'Pitchers':
248
+ if stat_var1 == 'True AVG Splits':
249
+ pitcher_stats = TA_table
250
+ pitcher_stats = pitcher_stats[pitcher_stats['Team'].isin(sp_var1)]
251
+ pitcher_stats = pitcher_stats.set_index('Player')
252
+ st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn_r').format(precision=3), use_container_width = True)
253
+ if stat_var1 == 'HWSr Splits':
254
+ pitcher_stats = HWS_table
255
+ pitcher_stats = pitcher_stats[pitcher_stats['Team'].isin(sp_var1)]
256
+ pitcher_stats = pitcher_stats.set_index('Player')
257
+ st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn_r').format(precision=3), use_container_width = True)
258
+ elif stat_var1 == 'Current Slate Stats':
259
+ pitcher_stats = SP_slate_table
260
+ pitcher_stats = pitcher_stats[pitcher_stats['Team'].isin(sp_var1)]
261
+ pitcher_stats = pitcher_stats.set_index('Player')
262
+ st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn_r').background_gradient(cmap='RdYlGn', subset='K%').format(SP_format, precision=2), use_container_width = True)
263
+ elif stat_var1 == 'Stats vs. RHH':
264
+ pitcher_stats = RHH_table
265
+ pitcher_stats = pitcher_stats[pitcher_stats['Team'].isin(sp_var1)]
266
+ pitcher_stats = pitcher_stats.set_index('Names')
267
+ st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r', subset=['Opp RHH', 'Salary', 'BB%', 'True AVG', 'xSLG', 'xBA', 'Hits', 'Homeruns', 'xHRs']).background_gradient(cmap='RdYlGn', subset='K%').format(SP_format, precision=2), use_container_width = True)
268
+ elif stat_var1 == 'Stats vs. LHH':
269
+ pitcher_stats = LHH_table
270
+ pitcher_stats = pitcher_stats[pitcher_stats['Team'].isin(sp_var1)]
271
+ pitcher_stats = pitcher_stats.set_index('Names')
272
+ st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r', subset=['Opp LHH', 'Salary', 'BB%', 'True AVG', 'xSLG', 'xBA', 'Hits', 'Homeruns', 'xHRs']).background_gradient(cmap='RdYlGn', subset='K%').format(SP_format, precision=2), use_container_width = True)
273
+ elif stat_var1 == 'Full League Stats':
274
+ pitcher_stats = Full_stats_table
275
+ st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').background_gradient(cmap='RdYlGn', subset=['Strikeoutper', 'Strikeouts', 'PA']).format(precision=0).format(precision=3, subset = SP_league_format), use_container_width = True)
276
+ elif stat_var1 == 'Full League Stats vs. RHH':
277
+ pitcher_stats = Full_RHH_table
278
+ st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').background_gradient(cmap='RdYlGn', subset=['Strikeoutper', 'Strikeouts', 'PA']).format(precision=0).format(precision=3, subset = SP_league_format), use_container_width = True)
279
+ elif stat_var1 == 'Full League Stats vs. LHH':
280
+ pitcher_stats = Full_LHH_table
281
+ st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').background_gradient(cmap='RdYlGn', subset=['Strikeoutper', 'Strikeouts', 'PA']).format(precision=0).format(precision=3, subset = SP_league_format), use_container_width = True)
282
+ elif stat_var1 == 'Bullpen Data':
283
+ pitcher_stats = Bullpen_table
284
+ pitcher_stats = pitcher_stats[pitcher_stats['Names'].isin(sp_var1)]
285
+ pitcher_stats = pitcher_stats.set_index('Names')
286
+ st.dataframe(pitcher_stats.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').background_gradient(cmap='RdYlGn', subset=['Strikeoutper', 'Strikeouts', 'PA']).format(precision=0).format(precision=3, subset = BP_league_format), use_container_width = True)
287
+ elif stat_type_var1 == 'Hitters':
288
+ if stat_var1 == 'Current Slate Player Stats':
289
+ if site_var1 == 'Draftkings':
290
+ hitter_stats = load_table(data_hold, 'DK_Slate_hitters')
291
+ if pos_var1 != 'All':
292
+ hitter_stats = hitter_stats[hitter_stats['Position'].str.contains('|'.join(pos_var1))]
293
+ elif site_var1 == 'Fanduel':
294
+ hitter_stats = load_table(data_hold, 'FD_Slate_Hitters')
295
+ if pos_var1 != 'All':
296
+ hitter_stats = hitter_stats[hitter_stats['Position'].str.contains('|'.join(pos_var1))]
297
+ hitter_stats.apply(pd.to_numeric, errors='ignore')
298
+ hitter_stats.replace('', np.nan, inplace=True)
299
+ hitter_stats = hitter_stats.dropna(subset=['Order'])
300
+ hitter_stats = hitter_stats.dropna(subset=['Opp_SP'])
301
+ hitter_stats = hitter_stats.drop(columns=['IBB'])
302
+ hitter_stats = hitter_stats.sort_values(by='Event/PA', ascending=False)
303
+ hitter_stats = hitter_stats.set_index('Player')
304
+ hitter_stats = hitter_stats[hitter_stats['Team'].isin(team_var1)]
305
+ st.dataframe(hitter_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['K%', 'Order', 'Salary']).format(hitter_format, precision=0).format(precision=3, subset = ['xBA', 'xSLG']), use_container_width = True)
306
+ elif stat_var1 == 'Current Slate Team Stats':
307
+ if site_var1 == 'Draftkings':
308
+ hitter_stats = load_table(data_hold, 'DK_Slate_Teams')
309
+ elif site_var1 == 'Fanduel':
310
+ hitter_stats = load_table(data_hold, 'FD_Slate_Teams')
311
+ hitter_stats.apply(pd.to_numeric, errors='ignore')
312
+ hitter_stats['Acro'] = hitter_stats['Team']
313
+ hitter_stats.replace('', np.nan, inplace=True)
314
+ hitter_stats = hitter_stats.dropna(subset=['Opp_SP'])
315
+ hitter_stats = hitter_stats.sort_values(by='Event/PA', ascending=False)
316
+ hitter_stats = hitter_stats.set_index('Team')
317
+ hitter_stats = hitter_stats[hitter_stats['Acro'].isin(team_var1)]
318
+ st.dataframe(hitter_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['K%', 'Avg Salary']).format(hitter_format, precision=0).format(precision=3, subset = ['xBA', 'xSLG', 'Opp True AVG']), use_container_width = True)
319
+ elif stat_var1 == 'Team Trending Stats (Offense)':
320
+ hitter_stats = load_table(data_hold, 'Macro_Trending')
321
+ hitter_stats.apply(pd.to_numeric, errors='ignore')
322
+ for checkVar in range(len(wrong_acro)):
323
+ hitter_stats['Team'] = hitter_stats['Team'].replace(wrong_acro, right_acro)
324
+ hitter_stats['Acro'] = hitter_stats['Team']
325
+ hitter_stats.replace('', np.nan, inplace=True)
326
+ hitter_stats = hitter_stats.dropna(subset=['Opp'])
327
+ hitter_stats['8+ For'] = hitter_stats['8+ For'].str.replace('%', '').astype(float)/100
328
+ hitter_stats['8+ For L5'] = hitter_stats['8+ For L5'].str.replace('%', '').astype(float)/100
329
+ hitter_stats['8+ For L10'] = hitter_stats['8+ For L10'].str.replace('%', '').astype(float)/100
330
+ hitter_stats['Trending 8+ For'] = hitter_stats['Trending 8+ For'].str.replace('%', '').astype(float)/100
331
+ hitter_stats['8+ Allowed'] = hitter_stats['8+ Allowed'].str.replace('%', '').astype(float)/100
332
+ hitter_stats['8+ Allowed L5'] = hitter_stats['8+ Allowed L5'].str.replace('%', '').astype(float)/100
333
+ hitter_stats['8+ Allowed L10'] = hitter_stats['8+ Allowed L10'].str.replace('%', '').astype(float)/100
334
+ hitter_stats['Trending 8+ Allowed'] = hitter_stats['Trending 8+ Allowed'].str.replace('%', '').astype(float)/100
335
+ hitter_stats = hitter_stats[['Team', 'Opp', 'Avg Score', 'Avg Score L5', 'Avg Score L10', 'Trending Score', '8+ For', '8+ For L5', '8+ For L10', 'Trending 8+ For', 'Acro']]
336
+ hitter_stats = hitter_stats.sort_values(by='Trending Score', ascending=False)
337
+ hitter_stats = hitter_stats.set_index('Team')
338
+ hitter_stats = hitter_stats[hitter_stats['Acro'].isin(team_var1)]
339
+ st.dataframe(hitter_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(offense_format, precision=2), use_container_width = True)
340
+ elif stat_var1 == 'Team Trending Stats (Defense)':
341
+ hitter_stats = load_table(data_hold, 'Macro_Trending')
342
+ hitter_stats.apply(pd.to_numeric, errors='ignore')
343
+ for checkVar in range(len(wrong_acro)):
344
+ hitter_stats['Team'] = hitter_stats['Team'].replace(wrong_acro, right_acro)
345
+ hitter_stats['Acro'] = hitter_stats['Team']
346
+ hitter_stats.replace('', np.nan, inplace=True)
347
+ hitter_stats = hitter_stats.dropna(subset=['Opp'])
348
+ hitter_stats['8+ For'] = hitter_stats['8+ For'].str.replace('%', '').astype(float)/100
349
+ hitter_stats['8+ For L5'] = hitter_stats['8+ For L5'].str.replace('%', '').astype(float)/100
350
+ hitter_stats['8+ For L10'] = hitter_stats['8+ For L10'].str.replace('%', '').astype(float)/100
351
+ hitter_stats['Trending 8+ For'] = hitter_stats['Trending 8+ For'].str.replace('%', '').astype(float)/100
352
+ hitter_stats['8+ Allowed'] = hitter_stats['8+ Allowed'].str.replace('%', '').astype(float)/100
353
+ hitter_stats['8+ Allowed L5'] = hitter_stats['8+ Allowed L5'].str.replace('%', '').astype(float)/100
354
+ hitter_stats['8+ Allowed L10'] = hitter_stats['8+ Allowed L10'].str.replace('%', '').astype(float)/100
355
+ hitter_stats['Trending 8+ Allowed'] = hitter_stats['Trending 8+ Allowed'].str.replace('%', '').astype(float)/100
356
+ hitter_stats = hitter_stats[['Team', 'Opp', 'Avg Allowed', 'Avg Allowed L5', 'Avg Allowed L10', 'Trending Avg Allowed', '8+ Allowed', '8+ Allowed L5', '8+ Allowed L10', 'Trending 8+ Allowed', 'Acro']]
357
+ hitter_stats = hitter_stats.sort_values(by='Trending Avg Allowed', ascending=False)
358
+ hitter_stats = hitter_stats.set_index('Team')
359
+ hitter_stats = hitter_stats[hitter_stats['Acro'].isin(team_var1)]
360
+ st.dataframe(hitter_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(defense_format, precision=2), use_container_width = True)
361
+ elif stat_var1 == 'Team Trending Stats (Matchup ELO)':
362
+ hitter_stats = load_table(data_hold, 'Macro_Trending')
363
+ hitter_stats.apply(pd.to_numeric, errors='ignore')
364
+ for checkVar in range(len(wrong_acro)):
365
+ hitter_stats['Team'] = hitter_stats['Team'].replace(wrong_acro, right_acro)
366
+ hitter_stats['Acro'] = hitter_stats['Team']
367
+ hitter_stats.replace('', np.nan, inplace=True)
368
+ hitter_stats = hitter_stats.dropna(subset=['Opp'])
369
+ hitter_stats['R2_to_Opp_szn'] = hitter_stats['R2_to_Opp_szn'].str.replace('%', '').astype(float)/100
370
+ hitter_stats['R2_to_Opp_sample'] = hitter_stats['R2_to_Opp_sample'].str.replace('%', '').astype(float)/100
371
+ hitter_stats['R2_to_Opp L5'] = hitter_stats['R2_to_Opp L5'].str.replace('%', '').astype(float)/100
372
+ hitter_stats['R2_to_Opp L10'] = hitter_stats['R2_to_Opp L10'].str.replace('%', '').astype(float)/100
373
+ hitter_stats['R2_to_Opp_Trend'] = hitter_stats['R2_to_Opp_Trend'].str.replace('%', '').astype(float)/100
374
+ hitter_stats = hitter_stats[['Team', 'Opp', 'Avg Score', 'Avg Score L5', 'Avg Score L10', 'Trending Score', 'R2_to_Opp_szn', 'R2_to_Opp_sample', 'R2_to_Opp L5', 'R2_to_Opp L10', 'R2_to_Opp_Trend', 'Acro']]
375
+ hitter_stats = hitter_stats.sort_values(by='R2_to_Opp_Trend', ascending=False)
376
+ hitter_stats = hitter_stats.set_index('Team')
377
+ hitter_stats = hitter_stats[hitter_stats['Acro'].isin(team_var1)]
378
+ st.dataframe(hitter_stats.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(R2_format, precision=2), use_container_width = True)
379
+ if stat_type_var1 == 'Pitchers':
380
+ st.download_button(
381
+ label="Export Tables",
382
+ data=convert_df_to_csv(pitcher_stats),
383
+ file_name='MLB_Research_export.csv',
384
+ mime='text/csv',
385
+ )
386
+ elif stat_type_var1 == 'Hitters':
387
+ st.download_button(
388
+ label="Export Tables",
389
+ data=convert_df_to_csv(hitter_stats),
390
+ file_name='MLB_Research_export.csv',
391
+ mime='text/csv',
392
+ )