Multichem commited on
Commit
7c07878
·
verified ·
1 Parent(s): 69b6ccf

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +311 -0
app.py ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pulp
2
+ import numpy as np
3
+ import pandas as pd
4
+ import streamlit as st
5
+ import gspread
6
+ from itertools import combinations
7
+
8
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
9
+ "https://www.googleapis.com/auth/drive"]
10
+
11
+ credentials = {
12
+ "type": "service_account",
13
+ "project_id": "sheets-api-connect-378620",
14
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
15
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
16
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
17
+ "client_id": "106625872877651920064",
18
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
19
+ "token_uri": "https://oauth2.googleapis.com/token",
20
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
21
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
22
+ }
23
+
24
+ gc = gspread.service_account_from_dict(credentials)
25
+
26
+ st.set_page_config(layout="wide")
27
+
28
+ game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
29
+ 'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
30
+
31
+ team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
32
+ '5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
33
+
34
+ wrong_acro = ['WSH', 'AZ']
35
+ right_acro = ['WAS', 'ARI']
36
+
37
+ dk_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
38
+ fd_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
39
+
40
+ secondary_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
41
+ secondary_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
42
+
43
+ all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
44
+ all_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
45
+ final_Proj = 0
46
+
47
+ @st.cache_data
48
+ def load_time():
49
+ sh = gc.open_by_url(dk_player_projections)
50
+ worksheet = sh.worksheet('Timestamp')
51
+ raw_stamp = worksheet.acell('a1').value
52
+
53
+ t_stamp = f"Last update was at {raw_stamp}"
54
+
55
+ return t_stamp
56
+
57
+ @st.cache_data
58
+ def set_slate_teams():
59
+ sh = gc.open_by_url(all_dk_player_projections)
60
+ worksheet = sh.worksheet('Site_Info')
61
+ raw_display = pd.DataFrame(worksheet.get_all_records())
62
+
63
+ for checkVar in range(len(wrong_acro)):
64
+ raw_display['FD Main'] = raw_display['FD Main'].replace(wrong_acro, right_acro)
65
+
66
+ for checkVar in range(len(wrong_acro)):
67
+ raw_display['FD Secondary'] = raw_display['FD Secondary'].replace(wrong_acro, right_acro)
68
+
69
+ for checkVar in range(len(wrong_acro)):
70
+ raw_display['FD Overall'] = raw_display['FD Overall'].replace(wrong_acro, right_acro)
71
+
72
+ return raw_display
73
+
74
+ @st.cache_data
75
+ def load_dk_player_projections(URL):
76
+ sh = gc.open_by_url(URL)
77
+ worksheet = sh.worksheet('DK_Projections')
78
+ load_display = pd.DataFrame(worksheet.get_all_records())
79
+ load_display.replace('', np.nan, inplace=True)
80
+ raw_display = load_display.dropna(subset=['Median'])
81
+
82
+ return raw_display
83
+
84
+ @st.cache_data
85
+ def load_fd_player_projections(URL):
86
+ sh = gc.open_by_url(URL)
87
+ worksheet = sh.worksheet('FD_Projections')
88
+ load_display = pd.DataFrame(worksheet.get_all_records())
89
+ load_display.replace('', np.nan, inplace=True)
90
+ raw_display = load_display.dropna(subset=['Median'])
91
+
92
+ return raw_display
93
+
94
+ @st.cache_data
95
+ def convert_df_to_csv(df):
96
+ return df.to_csv().encode('utf-8')
97
+
98
+ t_stamp = load_time()
99
+ site_slates = set_slate_teams()
100
+ col1, col2 = st.columns([1, 5])
101
+
102
+ with col1:
103
+ st.info(t_stamp)
104
+ if st.button("Load/Reset Data", key='reset4'):
105
+ st.cache_data.clear()
106
+ slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'All Games'), key='slate_var1')
107
+ site_var2 = st.radio("What site are you playing?", ('Draftkings', 'Fanduel'), key='site_var2')
108
+ if slate_var1 == 'Main Slate':
109
+ if site_var2 == 'Draftkings':
110
+ slate_teams = site_slates['DK Main'].values.tolist()
111
+ raw_baselines = load_dk_player_projections(all_dk_player_projections)
112
+ raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
113
+ elif site_var2 == 'Fanduel':
114
+ slate_teams = site_slates['FD Main'].values.tolist()
115
+ raw_baselines = load_fd_player_projections(all_fd_player_projections)
116
+ raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
117
+ elif slate_var1 == 'Secondary Slate':
118
+ if site_var2 == 'Draftkings':
119
+ slate_teams = site_slates['DK Secondary'].values.tolist()
120
+ raw_baselines = load_dk_player_projections(all_dk_player_projections)
121
+ raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
122
+ elif site_var2 == 'Fanduel':
123
+ slate_teams = site_slates['FD Secondary'].values.tolist()
124
+ raw_baselines = load_fd_player_projections(all_fd_player_projections)
125
+ raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
126
+ elif slate_var1 == 'All Games':
127
+ if site_var2 == 'Draftkings':
128
+ slate_teams = site_slates['DK Overall'].values.tolist()
129
+ raw_baselines = load_dk_player_projections(all_dk_player_projections)
130
+ raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
131
+ elif site_var2 == 'Fanduel':
132
+ slate_teams = site_slates['FD Overall'].values.tolist()
133
+ raw_baselines = load_fd_player_projections(all_fd_player_projections)
134
+ raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
135
+ split_var2 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('Full Slate Run', 'Specific Teams'), key='split_var2')
136
+ if split_var2 == 'Specific Teams':
137
+ team_var2 = st.multiselect('Which teams would you like to include in the analysis?', options = raw_baselines['Team'].unique(), key='team_var2')
138
+ elif split_var2 == 'Full Slate Run':
139
+ team_var2 = raw_baselines.Team.unique().tolist()
140
+ pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2')
141
+ if pos_split2 == 'Specific Positions':
142
+ pos_var2 = st.multiselect('What Positions would you like to view?', options = ['SP', 'P', 'C', '1B', '2B', '3B', 'SS', 'OF'])
143
+ elif pos_split2 == 'All Positions':
144
+ pos_var2 = 'All'
145
+ if site_var2 == 'Draftkings':
146
+ max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 50000, value = 35000, step = 100, key='max_sal2')
147
+ elif site_var2 == 'Fanduel':
148
+ max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 35000, value = 25000, step = 100, key='max_sal2')
149
+ size_var2 = st.selectbox('What size of stacks are you analyzing?', options = ['3-man', '4-man', '5-man'])
150
+ if size_var2 == '3-man':
151
+ stack_size = 3
152
+ if size_var2 == '4-man':
153
+ stack_size = 4
154
+ if size_var2 == '5-man':
155
+ stack_size = 5
156
+
157
+ team_dict = dict(zip(raw_baselines.Player, raw_baselines.Team))
158
+ proj_dict = dict(zip(raw_baselines.Player, raw_baselines.Median))
159
+ own_dict = dict(zip(raw_baselines.Player, raw_baselines.Own))
160
+ cost_dict = dict(zip(raw_baselines.Player, raw_baselines.Salary))
161
+
162
+ with col2:
163
+ stack_hold_container = st.empty()
164
+ if st.button('Run stack analysis'):
165
+ comb_list = []
166
+ if pos_split2 == 'All Positions':
167
+ raw_baselines = raw_baselines
168
+ elif pos_split2 != 'All Positions':
169
+ raw_baselines = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var2))]
170
+
171
+ for cur_team in team_var2:
172
+ working_baselines = raw_baselines
173
+ working_baselines = working_baselines[working_baselines['Team'] == cur_team]
174
+ working_baselines = working_baselines[working_baselines['Position'] != 'SP']
175
+ working_baselines = working_baselines[working_baselines['Position'] != 'P']
176
+ order_list = working_baselines['Player']
177
+
178
+ comb = combinations(order_list, stack_size)
179
+
180
+ for i in list(comb):
181
+ comb_list.append(i)
182
+
183
+ comb_DF = pd.DataFrame(comb_list)
184
+
185
+ if stack_size == 3:
186
+ comb_DF['Team'] = comb_DF[0].map(team_dict)
187
+
188
+ comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
189
+ comb_DF[1].map(proj_dict),
190
+ comb_DF[2].map(proj_dict)])
191
+
192
+ comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
193
+ comb_DF[1].map(cost_dict),
194
+ comb_DF[2].map(cost_dict)])
195
+
196
+ comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
197
+ comb_DF[1].map(own_dict),
198
+ comb_DF[2].map(own_dict)])
199
+ elif stack_size == 4:
200
+ comb_DF['Team'] = comb_DF[0].map(team_dict)
201
+
202
+ comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
203
+ comb_DF[1].map(proj_dict),
204
+ comb_DF[2].map(proj_dict),
205
+ comb_DF[3].map(proj_dict)])
206
+
207
+ comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
208
+ comb_DF[1].map(cost_dict),
209
+ comb_DF[2].map(cost_dict),
210
+ comb_DF[3].map(cost_dict)])
211
+
212
+ comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
213
+ comb_DF[1].map(own_dict),
214
+ comb_DF[2].map(own_dict),
215
+ comb_DF[3].map(own_dict)])
216
+ elif stack_size == 5:
217
+ comb_DF['Team'] = comb_DF[0].map(team_dict)
218
+
219
+ comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
220
+ comb_DF[1].map(proj_dict),
221
+ comb_DF[2].map(proj_dict),
222
+ comb_DF[3].map(proj_dict),
223
+ comb_DF[4].map(proj_dict)])
224
+
225
+ comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
226
+ comb_DF[1].map(cost_dict),
227
+ comb_DF[2].map(cost_dict),
228
+ comb_DF[3].map(cost_dict),
229
+ comb_DF[4].map(cost_dict)])
230
+
231
+ comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
232
+ comb_DF[1].map(own_dict),
233
+ comb_DF[2].map(own_dict),
234
+ comb_DF[3].map(own_dict),
235
+ comb_DF[4].map(own_dict)])
236
+
237
+ comb_DF = comb_DF.sort_values(by='Proj', ascending=False)
238
+ comb_DF = comb_DF.loc[comb_DF['Salary'] <= max_sal2]
239
+
240
+ cut_var = 0
241
+
242
+ if stack_size == 3:
243
+ while cut_var <= int(len(comb_DF)):
244
+ try:
245
+ if int(cut_var) == 0:
246
+ cur_proj = float(comb_DF.iat[cut_var,4])
247
+ cur_own = float(comb_DF.iat[cut_var,6])
248
+ elif int(cut_var) >= 1:
249
+ check_own = float(comb_DF.iat[cut_var,6])
250
+ if check_own > cur_own:
251
+ comb_DF = comb_DF.drop([cut_var])
252
+ cur_own = cur_own
253
+ cut_var = cut_var - 1
254
+ comb_DF = comb_DF.reset_index()
255
+ comb_DF = comb_DF.drop(['index'], axis=1)
256
+ elif check_own <= cur_own:
257
+ cur_own = float(comb_DF.iat[cut_var,6])
258
+ cut_var = cut_var
259
+ cut_var += 1
260
+ except:
261
+ cut_var += 1
262
+ elif stack_size == 4:
263
+ while cut_var <= int(len(comb_DF)):
264
+ try:
265
+ if int(cut_var) == 0:
266
+ cur_proj = float(comb_DF.iat[cut_var,5])
267
+ cur_own = float(comb_DF.iat[cut_var,7])
268
+ elif int(cut_var) >= 1:
269
+ check_own = float(comb_DF.iat[cut_var,7])
270
+ if check_own > cur_own:
271
+ comb_DF = comb_DF.drop([cut_var])
272
+ cur_own = cur_own
273
+ cut_var = cut_var - 1
274
+ comb_DF = comb_DF.reset_index()
275
+ comb_DF = comb_DF.drop(['index'], axis=1)
276
+ elif check_own <= cur_own:
277
+ cur_own = float(comb_DF.iat[cut_var,7])
278
+ cut_var = cut_var
279
+ cut_var += 1
280
+ except:
281
+ cut_var += 1
282
+ elif stack_size == 5:
283
+ while cut_var <= int(len(comb_DF)):
284
+ try:
285
+ if int(cut_var) == 0:
286
+ cur_proj = float(comb_DF.iat[cut_var,6])
287
+ cur_own = float(comb_DF.iat[cut_var,8])
288
+ elif int(cut_var) >= 1:
289
+ check_own = float(comb_DF.iat[cut_var,8])
290
+ if check_own > cur_own:
291
+ comb_DF = comb_DF.drop([cut_var])
292
+ cur_own = cur_own
293
+ cut_var = cut_var - 1
294
+ comb_DF = comb_DF.reset_index()
295
+ comb_DF = comb_DF.drop(['index'], axis=1)
296
+ elif check_own <= cur_own:
297
+ cur_own = float(comb_DF.iat[cut_var,8])
298
+ cut_var = cut_var
299
+ cut_var += 1
300
+ except:
301
+ cut_var += 1
302
+
303
+ with stack_hold_container:
304
+ stack_hold_container = st.empty()
305
+ st.dataframe(comb_DF.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
306
+ st.download_button(
307
+ label="Export Tables",
308
+ data=convert_df_to_csv(comb_DF),
309
+ file_name='MLB_Stack_Options_export.csv',
310
+ mime='text/csv',
311
+ )