MLB_Team_ROO / app.py
Multichem's picture
Update app.py
4843a50 verified
raw
history blame
9.43 kB
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
from itertools import combinations
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
st.set_page_config(layout="wide")
wrong_acro = ['WSH', 'AZ', 'CWS']
right_acro = ['WAS', 'ARI', 'CHW']
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
'5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
dk_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
fd_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
secondary_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
secondary_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
all_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
final_Proj = 0
@st.cache_data
def load_time():
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('Timestamp')
raw_stamp = worksheet.acell('a1').value
t_stamp = f"Last update was at {raw_stamp}"
return t_stamp
@st.cache_data
def set_slate_teams():
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('Site_Info')
raw_display = pd.DataFrame(worksheet.get_all_records())
for checkVar in range(len(wrong_acro)):
raw_display['DK Main'] = raw_display['DK Main'].replace(wrong_acro, right_acro)
for checkVar in range(len(wrong_acro)):
raw_display['DK Secondary'] = raw_display['DK Secondary'].replace(wrong_acro, right_acro)
for checkVar in range(len(wrong_acro)):
raw_display['DK Overall'] = raw_display['DK Overall'].replace(wrong_acro, right_acro)
for checkVar in range(len(wrong_acro)):
raw_display['FD Main'] = raw_display['FD Main'].replace(wrong_acro, right_acro)
for checkVar in range(len(wrong_acro)):
raw_display['FD Secondary'] = raw_display['FD Secondary'].replace(wrong_acro, right_acro)
for checkVar in range(len(wrong_acro)):
raw_display['FD Overall'] = raw_display['FD Overall'].replace(wrong_acro, right_acro)
return raw_display
@st.cache_data
def load_team_roo_table(URL):
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('Team_ROO')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display = raw_display[['teams', 'Opp SP', 'Top Score%', '0 Runs', '1 Run', '2 Runs', '3 Runs', '4 Runs', '5 Runs', '6 Runs', '7 Runs', '8 Runs', '9 Runs', '10 Runs']]
for checkVar in range(len(wrong_acro)):
raw_display['teams'] = raw_display['teams'].replace(wrong_acro, right_acro)
return raw_display
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
t_stamp = load_time()
site_slates = set_slate_teams()
with st.container():
col1, col2, col3 = st.columns([3, 3, 3])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
t_stamp = load_time()
site_slates = set_slate_teams()
st.info(t_stamp)
with col2:
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
with col3:
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'All Games'), key='slate_var1')
if site_var1 == 'Draftkings':
if slate_var1 == 'Main Slate':
team_roo_table = load_team_roo_table(all_dk_player_projections)
slate_teams = site_slates['DK Main'].values.tolist()
team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
elif slate_var1 == 'Secondary Slate':
team_roo_table = load_team_roo_table(all_dk_player_projections)
slate_teams = site_slates['DK Secondary'].values.tolist()
team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
elif slate_var1 == 'All Games':
team_roo_table = load_team_roo_table(all_dk_player_projections)
slate_teams = site_slates['DK Overall'].values.tolist()
team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
elif site_var1 == 'Fanduel':
if slate_var1 == 'Main Slate':
team_roo_table = load_team_roo_table(all_dk_player_projections)
slate_teams = site_slates['FD Main'].values.tolist()
team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
elif slate_var1 == 'Secondary Slate':
team_roo_table = load_team_roo_table(all_dk_player_projections)
slate_teams = site_slates['FD Secondary'].values.tolist()
team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
elif slate_var1 == 'All Games':
team_roo_table = load_team_roo_table(all_dk_player_projections)
slate_teams = site_slates['FD Overall'].values.tolist()
team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
team_roo_table = team_roo_table.sort_values(by='Top Score%', ascending=False)
team_roo_table = team_roo_table.drop_duplicates(subset='teams')
team_roo_table.rename(columns={"teams": "Names"}, inplace = True)
team_roo_table = team_roo_table.set_index('Names')
st.dataframe(team_roo_table.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(team_roo_format,precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(team_roo_table),
file_name='MLB_Team_ROO_export.csv',
mime='text/csv',
)