Multichem commited on
Commit
f8a3528
·
verified ·
1 Parent(s): d1352d1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +137 -0
app.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pulp
2
+ import numpy as np
3
+ import pandas as pd
4
+ import streamlit as st
5
+ import gspread
6
+ from itertools import combinations
7
+
8
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
9
+ "https://www.googleapis.com/auth/drive"]
10
+
11
+ credentials = {
12
+ "type": "service_account",
13
+ "project_id": "sheets-api-connect-378620",
14
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
15
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
16
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
17
+ "client_id": "106625872877651920064",
18
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
19
+ "token_uri": "https://oauth2.googleapis.com/token",
20
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
21
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
22
+ }
23
+
24
+ gc = gspread.service_account_from_dict(credentials)
25
+
26
+ st.set_page_config(layout="wide")
27
+
28
+ wrong_acro = ['WSH', 'AZ']
29
+ right_acro = ['WAS', 'ARI']
30
+
31
+ game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
32
+ 'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
33
+
34
+ team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
35
+ '5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
36
+
37
+ dk_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
38
+ fd_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
39
+
40
+ secondary_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
41
+ secondary_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
42
+
43
+ all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
44
+ all_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
45
+ final_Proj = 0
46
+
47
+ @st.cache_data
48
+ def load_time():
49
+ sh = gc.open_by_url(all_dk_player_projections)
50
+ worksheet = sh.worksheet('Timestamp')
51
+ raw_stamp = worksheet.acell('a1').value
52
+
53
+ t_stamp = f"Last update was at {raw_stamp}"
54
+
55
+ return t_stamp
56
+
57
+ @st.cache_data
58
+ def set_slate_teams():
59
+ sh = gc.open_by_url(all_dk_player_projections)
60
+ worksheet = sh.worksheet('Site_Info')
61
+ raw_display = pd.DataFrame(worksheet.get_all_records())
62
+
63
+ for checkVar in range(len(wrong_acro)):
64
+ raw_display['FD Main'] = raw_display['FD Main'].replace(wrong_acro, right_acro)
65
+
66
+ for checkVar in range(len(wrong_acro)):
67
+ raw_display['FD Secondary'] = raw_display['FD Secondary'].replace(wrong_acro, right_acro)
68
+
69
+ for checkVar in range(len(wrong_acro)):
70
+ raw_display['FD Overall'] = raw_display['FD Overall'].replace(wrong_acro, right_acro)
71
+
72
+ return raw_display
73
+
74
+ @st.cache_data
75
+ def load_team_roo_table(URL):
76
+ sh = gc.open_by_url(URL)
77
+ worksheet = sh.worksheet('Team_ROO')
78
+ raw_display = pd.DataFrame(worksheet.get_all_records())
79
+ raw_display = raw_display[['teams', 'Opp SP', 'Top Score%', '0 Runs', '1 Run', '2 Runs', '3 Runs', '4 Runs', '5 Runs', '6 Runs', '7 Runs', '8 Runs', '9 Runs', '10 Runs']]
80
+
81
+ return raw_display
82
+
83
+ @st.cache_data
84
+ def convert_df_to_csv(df):
85
+ return df.to_csv().encode('utf-8')
86
+
87
+ t_stamp = load_time()
88
+ site_slates = set_slate_teams()
89
+ with st.container():
90
+ col1, col2, col3 = st.columns([3, 3, 3])
91
+ with col1:
92
+ if st.button("Load/Reset Data", key='reset1'):
93
+ st.cache_data.clear()
94
+ t_stamp = load_time()
95
+ site_slates = set_slate_teams()
96
+ st.info(t_stamp)
97
+ with col2:
98
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
99
+ with col3:
100
+ slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'All Games'), key='slate_var1')
101
+ if site_var1 == 'Draftkings':
102
+ if slate_var1 == 'Main Slate':
103
+ team_roo_table = load_team_roo_table(all_dk_player_projections)
104
+ slate_teams = site_slates['DK Main'].values.tolist()
105
+ team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
106
+ elif slate_var1 == 'Secondary Slate':
107
+ team_roo_table = load_team_roo_table(all_dk_player_projections)
108
+ slate_teams = site_slates['DK Secondary'].values.tolist()
109
+ team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
110
+ elif slate_var1 == 'All Games':
111
+ team_roo_table = load_team_roo_table(all_dk_player_projections)
112
+ slate_teams = site_slates['DK Overall'].values.tolist()
113
+ team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
114
+ elif site_var1 == 'Fanduel':
115
+ if slate_var1 == 'Main Slate':
116
+ team_roo_table = load_team_roo_table(all_dk_player_projections)
117
+ slate_teams = site_slates['FD Main'].values.tolist()
118
+ team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
119
+ elif slate_var1 == 'Secondary Slate':
120
+ team_roo_table = load_team_roo_table(all_dk_player_projections)
121
+ slate_teams = site_slates['FD Secondary'].values.tolist()
122
+ team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
123
+ elif slate_var1 == 'All Games':
124
+ team_roo_table = load_team_roo_table(all_dk_player_projections)
125
+ slate_teams = site_slates['FD Overall'].values.tolist()
126
+ team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
127
+ team_roo_table = team_roo_table.sort_values(by='Top Score%', ascending=False)
128
+ team_roo_table = team_roo_table.drop_duplicates(subset='teams')
129
+ team_roo_table.rename(columns={"teams": "Names"}, inplace = True)
130
+ team_roo_table = team_roo_table.set_index('Names')
131
+ st.dataframe(team_roo_table.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(team_roo_format,precision=2), use_container_width = True)
132
+ st.download_button(
133
+ label="Export Tables",
134
+ data=convert_df_to_csv(team_roo_table),
135
+ file_name='MLB_Team_ROO_export.csv',
136
+ mime='text/csv',
137
+ )