Multichem commited on
Commit
3afb181
·
verified ·
1 Parent(s): 0e29400

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -26
app.py CHANGED
@@ -117,6 +117,7 @@ with tab3:
117
  with df_hold_container.container():
118
 
119
  df = pitcher_proj
 
120
 
121
  total_sims = 5000
122
 
@@ -138,29 +139,31 @@ with tab3:
138
  hold_file = flex_file
139
  overall_file = flex_file
140
  salary_file = flex_file
141
-
142
- overall_players = overall_file[['Player']]
143
-
144
- for x in range(0,total_sims):
145
- overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
146
-
147
- overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
148
  overall_file.astype('int').dtypes
149
 
150
  players_only = hold_file[['Player']]
 
151
 
152
- player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
 
 
 
153
 
154
- players_only['Mean_Outcome'] = overall_file.mean(axis=1)
155
- players_only['10%'] = overall_file.quantile(0.1, axis=1)
156
- players_only['90%'] = overall_file.quantile(0.9, axis=1)
 
157
  players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
158
  players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
159
  players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
160
-
 
 
161
  players_only['Player'] = hold_file[['Player']]
162
 
163
- final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '10%', 'Median', '90%']]
164
 
165
  final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
166
  final_Proj = final_Proj[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '10%', 'Median', '90%']]
@@ -185,6 +188,7 @@ with tab4:
185
  with df_hold_container.container():
186
 
187
  df = pitcher_proj
 
188
 
189
  total_sims = 5000
190
 
@@ -206,29 +210,31 @@ with tab4:
206
  hold_file = flex_file
207
  overall_file = flex_file
208
  salary_file = flex_file
209
-
210
- overall_players = overall_file[['Player']]
211
-
212
- for x in range(0,total_sims):
213
- overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
214
-
215
- overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
216
  overall_file.astype('int').dtypes
217
 
218
  players_only = hold_file[['Player']]
 
219
 
220
- player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
 
 
 
221
 
222
- players_only['Mean_Outcome'] = overall_file.mean(axis=1)
223
- players_only['10%'] = overall_file.quantile(0.1, axis=1)
224
- players_only['90%'] = overall_file.quantile(0.9, axis=1)
 
225
  players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
226
  players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
227
  players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
228
-
 
 
229
  players_only['Player'] = hold_file[['Player']]
230
 
231
- final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '10%', 'Median', '90%']]
232
 
233
  final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
234
  final_Proj = final_Proj[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '10%', 'Median', '90%']]
 
117
  with df_hold_container.container():
118
 
119
  df = pitcher_proj
120
+ df.rename(columns={"Name": "Player"}, inplace = True)
121
 
122
  total_sims = 5000
123
 
 
139
  hold_file = flex_file
140
  overall_file = flex_file
141
  salary_file = flex_file
142
+
143
+ overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
 
 
 
 
 
144
  overall_file.astype('int').dtypes
145
 
146
  players_only = hold_file[['Player']]
147
+ raw_lineups_file = players_only
148
 
149
+ for x in range(0,total_sims):
150
+ maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
151
+ raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
152
+ players_only[x] = raw_lineups_file[x].rank(ascending=False)
153
 
154
+ players_only=players_only.drop(['Player'], axis=1)
155
+ players_only.astype('int').dtypes
156
+
157
+ players_only['Average_Rank'] = players_only.mean(axis=1)
158
  players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
159
  players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
160
  players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
161
+ players_only['10%'] = overall_file.quantile(0.1, axis=1)
162
+ players_only['90%'] = overall_file.quantile(0.9, axis=1)
163
+
164
  players_only['Player'] = hold_file[['Player']]
165
 
166
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '10%', '90%']]
167
 
168
  final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
169
  final_Proj = final_Proj[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '10%', 'Median', '90%']]
 
188
  with df_hold_container.container():
189
 
190
  df = pitcher_proj
191
+ df.rename(columns={"Name": "Player"}, inplace = True)
192
 
193
  total_sims = 5000
194
 
 
210
  hold_file = flex_file
211
  overall_file = flex_file
212
  salary_file = flex_file
213
+
214
+ overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
 
 
 
 
 
215
  overall_file.astype('int').dtypes
216
 
217
  players_only = hold_file[['Player']]
218
+ raw_lineups_file = players_only
219
 
220
+ for x in range(0,total_sims):
221
+ maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
222
+ raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
223
+ players_only[x] = raw_lineups_file[x].rank(ascending=False)
224
 
225
+ players_only=players_only.drop(['Player'], axis=1)
226
+ players_only.astype('int').dtypes
227
+
228
+ players_only['Average_Rank'] = players_only.mean(axis=1)
229
  players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
230
  players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
231
  players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
232
+ players_only['10%'] = overall_file.quantile(0.1, axis=1)
233
+ players_only['90%'] = overall_file.quantile(0.9, axis=1)
234
+
235
  players_only['Player'] = hold_file[['Player']]
236
 
237
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '10%', '90%']]
238
 
239
  final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
240
  final_Proj = final_Proj[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '10%', 'Median', '90%']]