Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -42,7 +42,9 @@ master_hold = 'https://docs.google.com/spreadsheets/d/1D526UlXmrz-8qxVcUKrA-u7f6
|
|
42 |
team_format = {'2B': '{:.2%}', 'HR': '{:.2%}', 'SB': '{:.2%}', 'P_SO': '{:.2%}', 'P_H': '{:.2%}', 'P_R': '{:.2%}',
|
43 |
'P_HR': '{:.2%}', 'P_BB': '{:.2%}'}
|
44 |
|
45 |
-
|
|
|
|
|
46 |
def init_baselines():
|
47 |
sh = gcservice_account.open_by_url(master_hold)
|
48 |
worksheet = sh.worksheet('Pitcher_Proj')
|
@@ -65,17 +67,19 @@ def convert_df_to_csv(df):
|
|
65 |
return df.to_csv().encode('utf-8')
|
66 |
|
67 |
pitcher_proj, hitter_proj, wins_proj = init_baselines()
|
|
|
68 |
|
69 |
-
tab1, tab2, tab3, tab4, tab5 = st.tabs(["
|
70 |
|
71 |
with tab1:
|
72 |
if st.button("Reset Data", key='reset1'):
|
73 |
st.cache_data.clear()
|
74 |
pitcher_proj, hitter_proj, wins_proj = init_baselines()
|
|
|
75 |
raw_frame = wins_proj.copy()
|
76 |
export_frame_team = raw_frame[['Team', '2B', 'HR', 'SB', 'P_SO', 'P_H', 'P_R', 'P_HR', 'P_BB', 'Upside', 'Projected']]
|
77 |
disp_frame = raw_frame[['Team', '2B', 'HR', 'SB', 'P_SO', 'P_H', 'P_R', 'P_HR', 'P_BB', 'Upside', 'Projected']]
|
78 |
-
st.dataframe(disp_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(team_format, precision=2), use_container_width = True
|
79 |
|
80 |
st.download_button(
|
81 |
label="Export Team Win Projections",
|
@@ -89,12 +93,20 @@ with tab2:
|
|
89 |
if st.button("Reset Data", key='reset2'):
|
90 |
st.cache_data.clear()
|
91 |
pitcher_proj, hitter_proj, wins_proj = init_baselines()
|
|
|
92 |
raw_frame = pitcher_proj.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
export_frame_sp = raw_frame[['Name', 'Team', 'TBF', 'Ceiling_var', 'True_AVG', 'Hits', 'Singles%', 'Singles', 'Doubles%', 'Doubles', 'xHR%', 'Homeruns', 'Strikeout%', 'Strikeouts',
|
94 |
'Walk%', 'Walks', 'Runs%', 'Runs', 'ERA', 'Wins', 'Quality_starts', 'ADP', 'UD_fpts']]
|
95 |
-
|
96 |
'Walks', 'Runs', 'ERA', 'Wins', 'Quality_starts', 'ADP', 'UD_fpts']]
|
97 |
-
st.dataframe(
|
98 |
|
99 |
st.download_button(
|
100 |
label="Export Pitcher Projections",
|
@@ -108,12 +120,20 @@ with tab3:
|
|
108 |
if st.button("Reset Data", key='reset3'):
|
109 |
st.cache_data.clear()
|
110 |
pitcher_proj, hitter_proj, wins_proj = init_baselines()
|
|
|
111 |
raw_frame = hitter_proj.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
export_frame_h = raw_frame[['Name', 'Team', 'PA', 'Ceiling_var', 'Walk%', 'Walks', 'xHits', 'Singles%', 'Singles', 'Doubles%', 'Doubles',
|
113 |
'xHR%', 'Homeruns', 'Runs%', 'Runs', 'RBI%', 'RBI', 'Steal%', 'Stolen_bases', 'UD_fpts', 'ADP']]
|
114 |
-
|
115 |
'Homeruns', 'Runs', 'RBI', 'Stolen_bases', 'UD_fpts', 'ADP']]
|
116 |
-
st.dataframe(
|
117 |
|
118 |
st.download_button(
|
119 |
label="Export Hitter Projections",
|
@@ -127,6 +147,7 @@ with tab4:
|
|
127 |
if st.button("Reset Data", key='reset4'):
|
128 |
st.cache_data.clear()
|
129 |
pitcher_proj, hitter_proj, wins_proj = init_baselines()
|
|
|
130 |
col1, col2 = st.columns([1, 5])
|
131 |
|
132 |
with col2:
|
@@ -206,12 +227,13 @@ with tab4:
|
|
206 |
|
207 |
with df_hold_container.container():
|
208 |
df_hold_container = st.empty()
|
209 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
210 |
|
211 |
with tab5:
|
212 |
if st.button("Reset Data", key='reset5'):
|
213 |
st.cache_data.clear()
|
214 |
pitcher_proj, hitter_proj, wins_proj = init_baselines()
|
|
|
215 |
col1, col2 = st.columns([1, 5])
|
216 |
|
217 |
with col2:
|
@@ -298,4 +320,4 @@ with tab5:
|
|
298 |
|
299 |
with df_hold_container.container():
|
300 |
df_hold_container = st.empty()
|
301 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
|
|
42 |
team_format = {'2B': '{:.2%}', 'HR': '{:.2%}', 'SB': '{:.2%}', 'P_SO': '{:.2%}', 'P_H': '{:.2%}', 'P_R': '{:.2%}',
|
43 |
'P_HR': '{:.2%}', 'P_BB': '{:.2%}'}
|
44 |
|
45 |
+
sim_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}'}
|
46 |
+
|
47 |
+
@st.cache_resource(ttl = 600)
|
48 |
def init_baselines():
|
49 |
sh = gcservice_account.open_by_url(master_hold)
|
50 |
worksheet = sh.worksheet('Pitcher_Proj')
|
|
|
67 |
return df.to_csv().encode('utf-8')
|
68 |
|
69 |
pitcher_proj, hitter_proj, wins_proj = init_baselines()
|
70 |
+
total_teams = pitcher_proj['Team'].values.tolist()
|
71 |
|
72 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Pitcher Projections", "Hitter Projections", "Pitcher Simulations", "Hitter Simulations"])
|
73 |
|
74 |
with tab1:
|
75 |
if st.button("Reset Data", key='reset1'):
|
76 |
st.cache_data.clear()
|
77 |
pitcher_proj, hitter_proj, wins_proj = init_baselines()
|
78 |
+
total_teams = pitcher_proj['Team'].values.tolist()
|
79 |
raw_frame = wins_proj.copy()
|
80 |
export_frame_team = raw_frame[['Team', '2B', 'HR', 'SB', 'P_SO', 'P_H', 'P_R', 'P_HR', 'P_BB', 'Upside', 'Projected']]
|
81 |
disp_frame = raw_frame[['Team', '2B', 'HR', 'SB', 'P_SO', 'P_H', 'P_R', 'P_HR', 'P_BB', 'Upside', 'Projected']]
|
82 |
+
st.dataframe(disp_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(team_format, precision=2), use_container_width = True)
|
83 |
|
84 |
st.download_button(
|
85 |
label="Export Team Win Projections",
|
|
|
93 |
if st.button("Reset Data", key='reset2'):
|
94 |
st.cache_data.clear()
|
95 |
pitcher_proj, hitter_proj, wins_proj = init_baselines()
|
96 |
+
total_teams = pitcher_proj['Team'].values.tolist()
|
97 |
raw_frame = pitcher_proj.copy()
|
98 |
+
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
99 |
+
if split_var1 == 'Specific Teams':
|
100 |
+
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var1')
|
101 |
+
elif split_var1 == 'All':
|
102 |
+
team_var1 = total_teams
|
103 |
+
|
104 |
+
working_data = raw_frame[raw_frame['Team'].isin(team_var1)]
|
105 |
export_frame_sp = raw_frame[['Name', 'Team', 'TBF', 'Ceiling_var', 'True_AVG', 'Hits', 'Singles%', 'Singles', 'Doubles%', 'Doubles', 'xHR%', 'Homeruns', 'Strikeout%', 'Strikeouts',
|
106 |
'Walk%', 'Walks', 'Runs%', 'Runs', 'ERA', 'Wins', 'Quality_starts', 'ADP', 'UD_fpts']]
|
107 |
+
disp_frame_sp = working_data[['Name', 'Team', 'TBF', 'True_AVG', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'Strikeouts',
|
108 |
'Walks', 'Runs', 'ERA', 'Wins', 'Quality_starts', 'ADP', 'UD_fpts']]
|
109 |
+
st.dataframe(disp_frame_sp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
110 |
|
111 |
st.download_button(
|
112 |
label="Export Pitcher Projections",
|
|
|
120 |
if st.button("Reset Data", key='reset3'):
|
121 |
st.cache_data.clear()
|
122 |
pitcher_proj, hitter_proj, wins_proj = init_baselines()
|
123 |
+
total_teams = pitcher_proj['Team'].values.tolist()
|
124 |
raw_frame = hitter_proj.copy()
|
125 |
+
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
126 |
+
if split_var2 == 'Specific Teams':
|
127 |
+
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var2')
|
128 |
+
elif split_var2 == 'All':
|
129 |
+
team_var2 = total_teams
|
130 |
+
|
131 |
+
working_data = raw_frame[raw_frame['Team'].isin(team_var2)]
|
132 |
export_frame_h = raw_frame[['Name', 'Team', 'PA', 'Ceiling_var', 'Walk%', 'Walks', 'xHits', 'Singles%', 'Singles', 'Doubles%', 'Doubles',
|
133 |
'xHR%', 'Homeruns', 'Runs%', 'Runs', 'RBI%', 'RBI', 'Steal%', 'Stolen_bases', 'UD_fpts', 'ADP']]
|
134 |
+
disp_frame_h = working_data[['Name', 'Team', 'PA', 'Walks', 'xHits', 'Singles', 'Doubles',
|
135 |
'Homeruns', 'Runs', 'RBI', 'Stolen_bases', 'UD_fpts', 'ADP']]
|
136 |
+
st.dataframe(disp_frame_h.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
137 |
|
138 |
st.download_button(
|
139 |
label="Export Hitter Projections",
|
|
|
147 |
if st.button("Reset Data", key='reset4'):
|
148 |
st.cache_data.clear()
|
149 |
pitcher_proj, hitter_proj, wins_proj = init_baselines()
|
150 |
+
total_teams = pitcher_proj['Team'].values.tolist()
|
151 |
col1, col2 = st.columns([1, 5])
|
152 |
|
153 |
with col2:
|
|
|
227 |
|
228 |
with df_hold_container.container():
|
229 |
df_hold_container = st.empty()
|
230 |
+
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(sim_format, precision=2), use_container_width = True)
|
231 |
|
232 |
with tab5:
|
233 |
if st.button("Reset Data", key='reset5'):
|
234 |
st.cache_data.clear()
|
235 |
pitcher_proj, hitter_proj, wins_proj = init_baselines()
|
236 |
+
total_teams = pitcher_proj['Team'].values.tolist()
|
237 |
col1, col2 = st.columns([1, 5])
|
238 |
|
239 |
with col2:
|
|
|
320 |
|
321 |
with df_hold_container.container():
|
322 |
df_hold_container = st.empty()
|
323 |
+
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(sim_format, precision=2), use_container_width = True)
|