Multichem commited on
Commit
28bc32b
·
1 Parent(s): 78d73b2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -61,6 +61,7 @@ def init_baselines():
61
  raw_display.replace('', np.nan, inplace=True)
62
  raw_display = raw_display[['NBAID', 'PID', 'Player', 'TC', 'MP (Today)', 'Next Game', 'H/R', 'Injury Notes', 'Player Impact per 48', 'Player Impact',
63
  'Team PM', 'Last Updated']]
 
64
  public_minutes = raw_display[raw_display['NBAID'] != ""]
65
 
66
  sh = gcservice_account.open_by_url(NBABettingModel)
@@ -73,6 +74,7 @@ def init_baselines():
73
  raw_display.replace('', np.nan, inplace=True)
74
  raw_display = raw_display[['PID', 'Player', 'Team', 'Avg Minutes last 30 days for team', 'Minutes Projection', 'Rotation Impact (versus last 30 days)',
75
  'Injury Notes', 'Minute Change', 'Baseline Team PM', 'Net Rotation PM +/- for Team', 'Projected PM for Game', 'Offset', 'Rank']]
 
76
  player_impact = raw_display[raw_display['PID'] != ""]
77
 
78
  return public_minutes, player_impact
@@ -98,9 +100,9 @@ with tab1:
98
  player_min_disp = player_min_disp.sort_values(by=['TC', 'MP (Today)'], ascending=[False, True])
99
  st.dataframe(player_min_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
100
  st.download_button(
101
- label="Export Prop Model",
102
  data=convert_df_to_csv(public_minutes),
103
- file_name='AmericanNumbers_stats_export.csv',
104
  mime='text/csv',
105
  )
106
 
@@ -118,8 +120,8 @@ with tab2:
118
  player_impact_disp = player_impact_disp.sort_values(by=['Team', 'Rotation Impact (versus last 30 days)'], ascending=[False, True])
119
  st.dataframe(player_impact_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
120
  st.download_button(
121
- label="Export Prop Model",
122
  data=convert_df_to_csv(player_impact),
123
- file_name='AmericanNumbers_stats_export.csv',
124
  mime='text/csv',
125
  )
 
61
  raw_display.replace('', np.nan, inplace=True)
62
  raw_display = raw_display[['NBAID', 'PID', 'Player', 'TC', 'MP (Today)', 'Next Game', 'H/R', 'Injury Notes', 'Player Impact per 48', 'Player Impact',
63
  'Team PM', 'Last Updated']]
64
+ raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
65
  public_minutes = raw_display[raw_display['NBAID'] != ""]
66
 
67
  sh = gcservice_account.open_by_url(NBABettingModel)
 
74
  raw_display.replace('', np.nan, inplace=True)
75
  raw_display = raw_display[['PID', 'Player', 'Team', 'Avg Minutes last 30 days for team', 'Minutes Projection', 'Rotation Impact (versus last 30 days)',
76
  'Injury Notes', 'Minute Change', 'Baseline Team PM', 'Net Rotation PM +/- for Team', 'Projected PM for Game', 'Offset', 'Rank']]
77
+ raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
78
  player_impact = raw_display[raw_display['PID'] != ""]
79
 
80
  return public_minutes, player_impact
 
100
  player_min_disp = player_min_disp.sort_values(by=['TC', 'MP (Today)'], ascending=[False, True])
101
  st.dataframe(player_min_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
102
  st.download_button(
103
+ label="Export Minutes Baselines",
104
  data=convert_df_to_csv(public_minutes),
105
+ file_name='AmericanNumbers_Min_Baseline_export.csv',
106
  mime='text/csv',
107
  )
108
 
 
120
  player_impact_disp = player_impact_disp.sort_values(by=['Team', 'Rotation Impact (versus last 30 days)'], ascending=[False, True])
121
  st.dataframe(player_impact_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
122
  st.download_button(
123
+ label="Export Player Impacts",
124
  data=convert_df_to_csv(player_impact),
125
+ file_name='AmericanNumbers_Impact_export.csv',
126
  mime='text/csv',
127
  )