Update app.py
Browse files
app.py
CHANGED
@@ -46,41 +46,76 @@ def init_conn():
|
|
46 |
|
47 |
gcservice_account = init_conn()
|
48 |
|
49 |
-
|
|
|
50 |
|
51 |
@st.cache_resource(ttl = 300)
|
52 |
def init_baselines():
|
53 |
-
sh = gcservice_account.open_by_url(
|
54 |
|
55 |
-
worksheet = sh.worksheet('
|
56 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
57 |
raw_display.replace('', np.nan, inplace=True)
|
58 |
-
raw_display = raw_display[['
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
def convert_df_to_csv(df):
|
65 |
return df.to_csv().encode('utf-8')
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
gcservice_account = init_conn()
|
48 |
|
49 |
+
NBAGetGameData = 'https://docs.google.com/spreadsheets/d/1tRQrF_I5rS7Q0g9vE8NrENDZ2P3_DvtbBZzKEakwOI0/edit#gid=1373653837'
|
50 |
+
NBABettingModel = 'https://docs.google.com/spreadsheets/d/1WBnvOHQi_zVTGF63efejK5ho02AY00HiYrMHnMJXY1E/edit#gid=1157978351'
|
51 |
|
52 |
@st.cache_resource(ttl = 300)
|
53 |
def init_baselines():
|
54 |
+
sh = gcservice_account.open_by_url(NBAGetGameData)
|
55 |
|
56 |
+
worksheet = sh.worksheet('MinPublic')
|
57 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
58 |
raw_display.replace('', np.nan, inplace=True)
|
59 |
+
raw_display = raw_display[['NBAID', 'PID', 'Player', 'TC', 'MP (Today)', 'Next Game', 'H/R', 'Injury Notes', 'Player Impact per 48', 'Player Impact',
|
60 |
+
'Team PM', 'Last Updated']]
|
61 |
+
public_minutes = raw_display[raw_display['NBAID'] != ""]
|
62 |
|
63 |
+
return public_minutes
|
64 |
+
|
65 |
+
sh = gcservice_account.open_by_url(NBABettingModel)
|
66 |
+
|
67 |
+
worksheet = sh.worksheet('PlayerImpactByTeam')
|
68 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
69 |
+
raw_display.replace('', np.nan, inplace=True)
|
70 |
+
raw_display = raw_display[['PID', 'Player', 'Team', 'Avg Minutes last 30 days for team', 'Minutes Projection', 'Rotation Impact (versus last 30 days)',
|
71 |
+
'Injury Notes', 'Minute Change', 'Baseline Team PM', 'Net Rotation PM +/- for Team', 'Projected PM for Game', 'Offset', 'Rank']]
|
72 |
+
player_impact = raw_display[raw_display['PID'] != ""]
|
73 |
+
|
74 |
+
return player_impact
|
75 |
|
76 |
def convert_df_to_csv(df):
|
77 |
return df.to_csv().encode('utf-8')
|
78 |
|
79 |
+
public_minutes, player_impact = init_baselines()
|
80 |
+
|
81 |
+
tab1, tab2 = st.tabs(["Minutes Baselines", "Player Impacts"])
|
82 |
+
|
83 |
+
with tab1:
|
84 |
+
if st.button("Reset Data", key='reset1'):
|
85 |
+
st.cache_data.clear()
|
86 |
+
public_minutes, player_impact = init_baselines()
|
87 |
+
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
88 |
+
if split_var1 == 'Specific Teams':
|
89 |
+
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = public_minutes['TC'].unique(), key='team_var1')
|
90 |
+
elif split_var1 == 'All':
|
91 |
+
team_var1 = public_minutes.TC.values.tolist()
|
92 |
+
public_minutes = public_minutes[public_minutes['Team'].isin(team_var1)]
|
93 |
+
player_min_disp = public_minutes.set_index('Player')
|
94 |
+
player_min_disp = player_min_disp.sort_values(by=['TC', 'MP (Today)'], ascending=[False, True])
|
95 |
+
st.dataframe(player_min_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
96 |
+
st.download_button(
|
97 |
+
label="Export Prop Model",
|
98 |
+
data=convert_df_to_csv(public_minutes),
|
99 |
+
file_name='AmericanNumbers_stats_export.csv',
|
100 |
+
mime='text/csv',
|
101 |
+
)
|
102 |
+
|
103 |
+
with tab2:
|
104 |
+
if st.button("Reset Data", key='reset2'):
|
105 |
+
st.cache_data.clear()
|
106 |
+
public_minutes, player_impact = init_baselines()
|
107 |
+
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
108 |
+
if split_var2 == 'Specific Teams':
|
109 |
+
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = player_impact['Team'].unique(), key='team_var2')
|
110 |
+
elif split_var2 == 'All':
|
111 |
+
team_var2 = player_impact.Team.values.tolist()
|
112 |
+
player_impact = player_impact[player_impact['Team'].isin(team_var2)]
|
113 |
+
player_impact_disp = player_impact.set_index('Player')
|
114 |
+
player_impact_disp = player_impact_disp.sort_values(by=['Team', 'Rotation Impact (versus last 30 days)'], ascending=[False, True])
|
115 |
+
st.dataframe(player_impact_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
116 |
+
st.download_button(
|
117 |
+
label="Export Prop Model",
|
118 |
+
data=convert_df_to_csv(player_impact),
|
119 |
+
file_name='AmericanNumbers_stats_export.csv',
|
120 |
+
mime='text/csv',
|
121 |
+
)
|