File size: 21,930 Bytes
1329302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import pulp
import numpy as np
import pandas as pd
import random
import sys
import openpyxl
import re
import time
import streamlit as st
import matplotlib
from  matplotlib.colors import LinearSegmentedColormap
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
import json
import requests
import gspread
import plotly.figure_factory as ff

scope = ['https://www.googleapis.com/auth/spreadsheets',
          "https://www.googleapis.com/auth/drive"]

credentials = {
  "type": "service_account",
  "project_id": "sheets-api-connect-378620",
  "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
  "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
  "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
  "client_id": "106625872877651920064",
  "auth_uri": "https://accounts.google.com/o/oauth2/auth",
  "token_uri": "https://oauth2.googleapis.com/token",
  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
  "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}

gc = gspread.service_account_from_dict(credentials)

st.set_page_config(layout="wide")

roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
              '120+%': '{:.2%}','10x%': '{:.2%}','11x%': '{:.2%}','12x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}'}
stat_format = {'Win%': '{:.2%}'}

game_betting_model = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
props_overall = 'DK_NBA_Props'
player_overall = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
points_overall = 'DK_Points_Props'
assists_overall = 'DK_Assists_Props'
rebounds_overall = 'DK_Rebounds_Props'
pa_overall = 'DK_PA_Props'
pr_overall = 'DK_PR_Props'
pra_overall = 'DK_PRA_Props'

@st.cache_data
def create_player_props(URL):
    sh = gc.open_by_url(URL)
    worksheet = sh.get_worksheet(8)
    load_display = pd.DataFrame(worksheet.get_all_records())
    overall_data = load_display[['Name', 'Position', 'Team', '3P', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks']]
    overall_data.rename(columns={"Name": "player"}, inplace = True)
    overall_data['Points + Rebounds'] = overall_data['Points'] + overall_data['Rebounds']
    overall_data['Points + Assists'] = overall_data['Points'] + overall_data['Assists']
    overall_data['Points + Rebounds + Assists'] = overall_data['Points'] + overall_data['Rebounds'] + overall_data['Assists']
          
    return overall_data

@st.cache_data
def load_game_betting(URL):
    sh = gc.open_by_url(URL)
    worksheet = sh.get_worksheet(1)
    raw_display = pd.DataFrame(worksheet.get_all_records())

    return raw_display

@st.cache_data
def load_props(URL):
    sh = gc.open(URL)
    worksheet = sh.get_worksheet(0)
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"player": "Player"}, inplace = True)

    return raw_display

@st.cache_data
def load_player_baselines(URL):
    sh = gc.open(URL)
    worksheet = sh.get_worksheet(0)
    raw_display = pd.DataFrame(worksheet.get_all_records())

    return raw_display

@st.cache_data
def load_stat_specific(URL):
    sh = gc.open(URL)
    worksheet = sh.get_worksheet(0)
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"player": "Player"}, inplace = True)
    raw_display = raw_display.drop(columns=['Model Probability', 'short%', 'mid%', 'long%', 's_weighted%', 'm_weighted%', 'l_weighted%', 'weighted prob%'])

    return raw_display

team_frame = load_game_betting(game_betting_model)
props_frame = create_player_props(player_overall)

tab1, tab2, tab3, tab4 = st.tabs(["Game Betting Model", "Player Prop Baselines", "Stat Specific Props Projections", "Player Prop Simulations"])

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

with tab1:
    if st.button("Reset Data/Load Data", key='reset1'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
    st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    st.download_button(
            label="Export Projections",
            data=convert_df_to_csv(team_frame),
            file_name='NBA_DFS_team_frame.csv',
            mime='text/csv',
            key='team_frame',
    )

with tab2:
    if st.button("Reset Data/Load Data", key='reset2'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
    team_var1 = st.multiselect('View specific team?', options = props_frame['Team'].unique(), key = 'prop_teamvar')
    if team_var1:
          props_frame = props_frame[props_frame['Team'].isin(team_var1)]
    props_frame = props_frame.set_index('player')
    st.dataframe(props_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    st.download_button(
            label="Export Projections",
            data=convert_df_to_csv(props_frame),
            file_name='NBA_DFS_props_frame.csv',
            mime='text/csv',
            key='props_frame',
    )

with tab3:
    st.write("The Stat specific models are currently not accurate due to an API issue. Apoligies!")
    st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
    if st.button("Reset Data/Load Data", key='reset3'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
    col1, col2 = st.columns([1, 5])
    
    with col2:
        df_hold_container = st.empty()
        info_hold_container = st.empty()
        plot_hold_container = st.empty()
        export_container = st.empty()
    
    with col1:
        prop_type_var = st.selectbox('Select prop category', options = ['Points', 'Assists', 'Rebounds', 'Points + Assists', 'Points + Rebounds', 'Points + Rebounds + Assists'])

        if st.button('Simulate Prop Category'):
            with col2:
                
                with st.spinner('Wait for it...'):
                   
                    with df_hold_container.container():

                        if prop_type_var == "Points":
                            player_df = load_stat_specific(points_overall)
                            prop_df = load_props(props_overall)
                            prop_df = prop_df[['Player', 'points', 'over_points_line', 'under_points_line']]
                            prop_df = prop_df.loc[prop_df['points'] > 0]
                            prop_df['Over'] = np.where(prop_df['over_points_line'] < 0, (-(prop_df['over_points_line'])/((-(prop_df['over_points_line']))+100)), 100/(prop_df['over_points_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_points_line'] < 0, (-(prop_df['under_points_line'])/((-(prop_df['under_points_line']))+100)), 100/(prop_df['under_points_line']+100))
                            prop_df.rename(columns={"points": "Prop"}, inplace = True)
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                            df.rename(columns={"weighted%": "weighted"}, inplace = True)
                        elif prop_type_var == "Assists":
                            player_df = load_stat_specific(assists_overall)
                            prop_df = load_props(props_overall)
                            prop_df = prop_df[['Player', 'assists', 'over_assists_line', 'under_assists_line']]
                            prop_df = prop_df.loc[prop_df['assists'] > 0]
                            prop_df['Over'] = np.where(prop_df['over_assists_line'] < 0, (-(prop_df['over_assists_line'])/((-(prop_df['over_assists_line']))+100)), 100/(prop_df['over_assists_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_assists_line'] < 0, (-(prop_df['under_assists_line'])/((-(prop_df['under_assists_line']))+100)), 100/(prop_df['under_assists_line']+100))
                            prop_df.rename(columns={"assists": "Prop"}, inplace = True)
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                            df.rename(columns={"weighted%": "weighted"}, inplace = True)
                        elif prop_type_var == "Rebounds":
                            player_df = load_stat_specific(rebounds_overall)
                            prop_df = load_props(props_overall)
                            prop_df = prop_df[['Player', 'rebounds', 'over_rebounds_line', 'under_rebounds_line']]
                            prop_df = prop_df.loc[prop_df['rebounds'] > 0]
                            prop_df['Over'] = np.where(prop_df['over_rebounds_line'] < 0, (-(prop_df['over_rebounds_line'])/((-(prop_df['over_rebounds_line']))+100)), 100/(prop_df['over_rebounds_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_rebounds_line'] < 0, (-(prop_df['under_rebounds_line'])/((-(prop_df['under_rebounds_line']))+100)), 100/(prop_df['under_rebounds_line']+100))
                            prop_df.rename(columns={"rebounds": "Prop"}, inplace = True)
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                            df.rename(columns={"weighted%": "weighted"}, inplace = True)
                        elif prop_type_var == "Points + Assists":
                            player_df = load_stat_specific(pa_overall)
                            prop_df = load_props(props_overall)
                            prop_df = prop_df[['Player', 'points_assists', 'over_points_assists_line', 'under_points_assists_line']]
                            prop_df = prop_df.loc[prop_df['points_assists'] > 0]
                            prop_df['Over'] = np.where(prop_df['over_points_assists_line'] < 0, (-(prop_df['over_points_assists_line'])/((-(prop_df['over_points_assists_line']))+100)), 100/(prop_df['over_points_assists_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_points_assists_line'] < 0, (-(prop_df['under_points_assists_line'])/((-(prop_df['under_points_assists_line']))+100)), 100/(prop_df['under_points_assists_line']+100))
                            prop_df.rename(columns={"points_assists": "Prop"}, inplace = True)
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                            df.rename(columns={"weighted%": "weighted"}, inplace = True)
                        elif prop_type_var == "Points + Rebounds":
                            player_df = load_stat_specific(pr_overall)
                            prop_df = load_props(props_overall)
                            prop_df = prop_df[['Player', 'points_rebounds', 'over_points_rebounds_line', 'under_points_rebounds_line']]
                            prop_df = prop_df.loc[prop_df['points_rebounds'] > 0]
                            prop_df['Over'] = np.where(prop_df['over_points_rebounds_line'] < 0, (-(prop_df['over_points_rebounds_line'])/((-(prop_df['over_points_rebounds_line']))+100)), 100/(prop_df['over_points_rebounds_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_points_rebounds_line'] < 0, (-(prop_df['under_points_rebounds_line'])/((-(prop_df['under_points_rebounds_line']))+100)), 100/(prop_df['under_points_rebounds_line']+100))
                            prop_df.rename(columns={"points_rebounds": "Prop"}, inplace = True)
                            prop_df = prop_df[['Player', 'Prop', 'Over', 'Under']]
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                            df.rename(columns={"weighted%": "weighted"}, inplace = True)
                        elif prop_type_var == "Points + Rebounds + Assists":
                            player_df = load_stat_specific(pra_overall)
                            prop_df = load_props(props_overall)
                            prop_df = prop_df[['Player', 'points_rebounds_assists', 'over_points_rebounds_assists_line', 'under_points_rebounds_assists_line']]
                            prop_df = prop_df.loc[prop_df['points_rebounds_assists'] > 0]
                            prop_df['Over'] = np.where(prop_df['over_points_rebounds_assists_line'] < 0, (-(prop_df['over_points_rebounds_assists_line'])/((-(prop_df['over_points_rebounds_assists_line']))+100)), 100/(prop_df['over_points_rebounds_assists_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_points_rebounds_assists_line'] < 0, (-(prop_df['under_points_rebounds_assists_line'])/((-(prop_df['under_points_rebounds_assists_line']))+100)), 100/(prop_df['under_points_rebounds_assists_line']+100))
                            prop_df.rename(columns={"points_rebounds_assists": "Prop"}, inplace = True)
                            prop_df = prop_df[['Player', 'Prop', 'Over', 'Under']]
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                            df.rename(columns={"weighted%": "weighted"}, inplace = True)
                        
                        prop_dict = dict(zip(df.Player, df.Prop))
                        over_dict = dict(zip(df.Player, df.Over))
                        under_dict = dict(zip(df.Player, df.Under))
                        weighted_dict = dict(zip(df.Player, df.weighted))
                        
                        total_sims = 1000

                        df.replace("", 0, inplace=True)

                        if prop_type_var == "Points":
                            df['Median'] = df['Points']
                        elif prop_type_var == "Assists":
                            df['Median'] = df['Assists']
                        elif prop_type_var == "Rebounds":
                            df['Median'] = df['Rebounds']
                        elif prop_type_var == "Points + Assists":
                            df['Median'] = df['Points + Assists']
                        elif prop_type_var == "Points + Rebounds":
                            df['Median'] = df['Points + Rebounds']
                        elif prop_type_var == "Points + Rebounds + Assists":
                            df['Median'] = df['Points + Rebounds + Assists']

                        flex_file = df
                        flex_file['Floor'] = flex_file['Median'] * .20
                        flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .20)
                        flex_file['STD'] = (flex_file['Median'] / 4)
                        flex_file['Prop'] = flex_file['Player'].map(prop_dict)
                        flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]

                        hold_file = flex_file
                        overall_file = flex_file
                        prop_file = flex_file

                        overall_players = overall_file[['Player']]

                        for x in range(0,total_sims):    
                            prop_file[x] = prop_file['Prop']

                        prop_file = prop_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                        prop_file.astype('int').dtypes

                        for x in range(0,total_sims):
                            overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])

                        overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                        overall_file.astype('int').dtypes

                        players_only = hold_file[['Player']]

                        player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)

                        prop_check = (overall_file - prop_file)

                        players_only['Mean_Outcome'] = overall_file.mean(axis=1)
                        players_only['Weighted_over'] = players_only['Player'].map(weighted_dict)
                        players_only['Weighted_under'] = 1 - players_only['Player'].map(weighted_dict)
                        players_only['10%'] = overall_file.quantile(0.1, axis=1)
                        players_only['90%'] = overall_file.quantile(0.9, axis=1)
                        players_only['Over'] = prop_check[prop_check >= 1].count(axis=1)/float(total_sims)
                        players_only['Imp Over'] = players_only['Player'].map(over_dict)
                        players_only['Over%'] = players_only[["Over", "Weighted_over", "Imp Over"]].mean(axis=1)
                        players_only['Under'] = prop_check[prop_check < 1].count(axis=1)/float(total_sims)
                        players_only['Imp Under'] = players_only['Player'].map(under_dict)
                        players_only['Under%'] = players_only[["Under", "Weighted_under", "Imp Under"]].mean(axis=1)
                        players_only['Prop'] = players_only['Player'].map(prop_dict)
                        players_only['Prop_avg'] = players_only['Prop'].mean() / 100
                        players_only['prop_threshold'] = np.where(.25 - players_only['Prop_avg'] < .10, .10, .25 - players_only['Prop_avg'])
                        players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
                        players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
                        players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
                        players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
                        players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
                        players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
                        players_only['Edge'] = players_only['Bet_check']

                        players_only['Player'] = hold_file[['Player']]

                        final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
                        
                        final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
                    
                        final_outcomes = final_outcomes.set_index('Player')

                        with df_hold_container:
                            df_hold_container = st.empty()
                            st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
                        with export_container:
                            export_container = st.empty()
                            st.download_button(
                                label="Export Projections",
                                data=convert_df_to_csv(final_outcomes),
                                file_name='NBA_DFS_prop_proj.csv',
                                mime='text/csv',
                                key='prop_proj',
                            )
with tab4:
    st.info('Coming soon!')