Spaces:
Running
Running
File size: 21,930 Bytes
1329302 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import pulp
import numpy as np
import pandas as pd
import random
import sys
import openpyxl
import re
import time
import streamlit as st
import matplotlib
from matplotlib.colors import LinearSegmentedColormap
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
import json
import requests
import gspread
import plotly.figure_factory as ff
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
st.set_page_config(layout="wide")
roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
'120+%': '{:.2%}','10x%': '{:.2%}','11x%': '{:.2%}','12x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}'}
stat_format = {'Win%': '{:.2%}'}
game_betting_model = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
props_overall = 'DK_NBA_Props'
player_overall = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
points_overall = 'DK_Points_Props'
assists_overall = 'DK_Assists_Props'
rebounds_overall = 'DK_Rebounds_Props'
pa_overall = 'DK_PA_Props'
pr_overall = 'DK_PR_Props'
pra_overall = 'DK_PRA_Props'
@st.cache_data
def create_player_props(URL):
sh = gc.open_by_url(URL)
worksheet = sh.get_worksheet(8)
load_display = pd.DataFrame(worksheet.get_all_records())
overall_data = load_display[['Name', 'Position', 'Team', '3P', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks']]
overall_data.rename(columns={"Name": "player"}, inplace = True)
overall_data['Points + Rebounds'] = overall_data['Points'] + overall_data['Rebounds']
overall_data['Points + Assists'] = overall_data['Points'] + overall_data['Assists']
overall_data['Points + Rebounds + Assists'] = overall_data['Points'] + overall_data['Rebounds'] + overall_data['Assists']
return overall_data
@st.cache_data
def load_game_betting(URL):
sh = gc.open_by_url(URL)
worksheet = sh.get_worksheet(1)
raw_display = pd.DataFrame(worksheet.get_all_records())
return raw_display
@st.cache_data
def load_props(URL):
sh = gc.open(URL)
worksheet = sh.get_worksheet(0)
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"player": "Player"}, inplace = True)
return raw_display
@st.cache_data
def load_player_baselines(URL):
sh = gc.open(URL)
worksheet = sh.get_worksheet(0)
raw_display = pd.DataFrame(worksheet.get_all_records())
return raw_display
@st.cache_data
def load_stat_specific(URL):
sh = gc.open(URL)
worksheet = sh.get_worksheet(0)
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"player": "Player"}, inplace = True)
raw_display = raw_display.drop(columns=['Model Probability', 'short%', 'mid%', 'long%', 's_weighted%', 'm_weighted%', 'l_weighted%', 'weighted prob%'])
return raw_display
team_frame = load_game_betting(game_betting_model)
props_frame = create_player_props(player_overall)
tab1, tab2, tab3, tab4 = st.tabs(["Game Betting Model", "Player Prop Baselines", "Stat Specific Props Projections", "Player Prop Simulations"])
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
with tab1:
if st.button("Reset Data/Load Data", key='reset1'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Projections",
data=convert_df_to_csv(team_frame),
file_name='NBA_DFS_team_frame.csv',
mime='text/csv',
key='team_frame',
)
with tab2:
if st.button("Reset Data/Load Data", key='reset2'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
team_var1 = st.multiselect('View specific team?', options = props_frame['Team'].unique(), key = 'prop_teamvar')
if team_var1:
props_frame = props_frame[props_frame['Team'].isin(team_var1)]
props_frame = props_frame.set_index('player')
st.dataframe(props_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Projections",
data=convert_df_to_csv(props_frame),
file_name='NBA_DFS_props_frame.csv',
mime='text/csv',
key='props_frame',
)
with tab3:
st.write("The Stat specific models are currently not accurate due to an API issue. Apoligies!")
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
if st.button("Reset Data/Load Data", key='reset3'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
export_container = st.empty()
with col1:
prop_type_var = st.selectbox('Select prop category', options = ['Points', 'Assists', 'Rebounds', 'Points + Assists', 'Points + Rebounds', 'Points + Rebounds + Assists'])
if st.button('Simulate Prop Category'):
with col2:
with st.spinner('Wait for it...'):
with df_hold_container.container():
if prop_type_var == "Points":
player_df = load_stat_specific(points_overall)
prop_df = load_props(props_overall)
prop_df = prop_df[['Player', 'points', 'over_points_line', 'under_points_line']]
prop_df = prop_df.loc[prop_df['points'] > 0]
prop_df['Over'] = np.where(prop_df['over_points_line'] < 0, (-(prop_df['over_points_line'])/((-(prop_df['over_points_line']))+100)), 100/(prop_df['over_points_line']+100))
prop_df['Under'] = np.where(prop_df['under_points_line'] < 0, (-(prop_df['under_points_line'])/((-(prop_df['under_points_line']))+100)), 100/(prop_df['under_points_line']+100))
prop_df.rename(columns={"points": "Prop"}, inplace = True)
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df.rename(columns={"weighted%": "weighted"}, inplace = True)
elif prop_type_var == "Assists":
player_df = load_stat_specific(assists_overall)
prop_df = load_props(props_overall)
prop_df = prop_df[['Player', 'assists', 'over_assists_line', 'under_assists_line']]
prop_df = prop_df.loc[prop_df['assists'] > 0]
prop_df['Over'] = np.where(prop_df['over_assists_line'] < 0, (-(prop_df['over_assists_line'])/((-(prop_df['over_assists_line']))+100)), 100/(prop_df['over_assists_line']+100))
prop_df['Under'] = np.where(prop_df['under_assists_line'] < 0, (-(prop_df['under_assists_line'])/((-(prop_df['under_assists_line']))+100)), 100/(prop_df['under_assists_line']+100))
prop_df.rename(columns={"assists": "Prop"}, inplace = True)
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df.rename(columns={"weighted%": "weighted"}, inplace = True)
elif prop_type_var == "Rebounds":
player_df = load_stat_specific(rebounds_overall)
prop_df = load_props(props_overall)
prop_df = prop_df[['Player', 'rebounds', 'over_rebounds_line', 'under_rebounds_line']]
prop_df = prop_df.loc[prop_df['rebounds'] > 0]
prop_df['Over'] = np.where(prop_df['over_rebounds_line'] < 0, (-(prop_df['over_rebounds_line'])/((-(prop_df['over_rebounds_line']))+100)), 100/(prop_df['over_rebounds_line']+100))
prop_df['Under'] = np.where(prop_df['under_rebounds_line'] < 0, (-(prop_df['under_rebounds_line'])/((-(prop_df['under_rebounds_line']))+100)), 100/(prop_df['under_rebounds_line']+100))
prop_df.rename(columns={"rebounds": "Prop"}, inplace = True)
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df.rename(columns={"weighted%": "weighted"}, inplace = True)
elif prop_type_var == "Points + Assists":
player_df = load_stat_specific(pa_overall)
prop_df = load_props(props_overall)
prop_df = prop_df[['Player', 'points_assists', 'over_points_assists_line', 'under_points_assists_line']]
prop_df = prop_df.loc[prop_df['points_assists'] > 0]
prop_df['Over'] = np.where(prop_df['over_points_assists_line'] < 0, (-(prop_df['over_points_assists_line'])/((-(prop_df['over_points_assists_line']))+100)), 100/(prop_df['over_points_assists_line']+100))
prop_df['Under'] = np.where(prop_df['under_points_assists_line'] < 0, (-(prop_df['under_points_assists_line'])/((-(prop_df['under_points_assists_line']))+100)), 100/(prop_df['under_points_assists_line']+100))
prop_df.rename(columns={"points_assists": "Prop"}, inplace = True)
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df.rename(columns={"weighted%": "weighted"}, inplace = True)
elif prop_type_var == "Points + Rebounds":
player_df = load_stat_specific(pr_overall)
prop_df = load_props(props_overall)
prop_df = prop_df[['Player', 'points_rebounds', 'over_points_rebounds_line', 'under_points_rebounds_line']]
prop_df = prop_df.loc[prop_df['points_rebounds'] > 0]
prop_df['Over'] = np.where(prop_df['over_points_rebounds_line'] < 0, (-(prop_df['over_points_rebounds_line'])/((-(prop_df['over_points_rebounds_line']))+100)), 100/(prop_df['over_points_rebounds_line']+100))
prop_df['Under'] = np.where(prop_df['under_points_rebounds_line'] < 0, (-(prop_df['under_points_rebounds_line'])/((-(prop_df['under_points_rebounds_line']))+100)), 100/(prop_df['under_points_rebounds_line']+100))
prop_df.rename(columns={"points_rebounds": "Prop"}, inplace = True)
prop_df = prop_df[['Player', 'Prop', 'Over', 'Under']]
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df.rename(columns={"weighted%": "weighted"}, inplace = True)
elif prop_type_var == "Points + Rebounds + Assists":
player_df = load_stat_specific(pra_overall)
prop_df = load_props(props_overall)
prop_df = prop_df[['Player', 'points_rebounds_assists', 'over_points_rebounds_assists_line', 'under_points_rebounds_assists_line']]
prop_df = prop_df.loc[prop_df['points_rebounds_assists'] > 0]
prop_df['Over'] = np.where(prop_df['over_points_rebounds_assists_line'] < 0, (-(prop_df['over_points_rebounds_assists_line'])/((-(prop_df['over_points_rebounds_assists_line']))+100)), 100/(prop_df['over_points_rebounds_assists_line']+100))
prop_df['Under'] = np.where(prop_df['under_points_rebounds_assists_line'] < 0, (-(prop_df['under_points_rebounds_assists_line'])/((-(prop_df['under_points_rebounds_assists_line']))+100)), 100/(prop_df['under_points_rebounds_assists_line']+100))
prop_df.rename(columns={"points_rebounds_assists": "Prop"}, inplace = True)
prop_df = prop_df[['Player', 'Prop', 'Over', 'Under']]
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df.rename(columns={"weighted%": "weighted"}, inplace = True)
prop_dict = dict(zip(df.Player, df.Prop))
over_dict = dict(zip(df.Player, df.Over))
under_dict = dict(zip(df.Player, df.Under))
weighted_dict = dict(zip(df.Player, df.weighted))
total_sims = 1000
df.replace("", 0, inplace=True)
if prop_type_var == "Points":
df['Median'] = df['Points']
elif prop_type_var == "Assists":
df['Median'] = df['Assists']
elif prop_type_var == "Rebounds":
df['Median'] = df['Rebounds']
elif prop_type_var == "Points + Assists":
df['Median'] = df['Points + Assists']
elif prop_type_var == "Points + Rebounds":
df['Median'] = df['Points + Rebounds']
elif prop_type_var == "Points + Rebounds + Assists":
df['Median'] = df['Points + Rebounds + Assists']
flex_file = df
flex_file['Floor'] = flex_file['Median'] * .20
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .20)
flex_file['STD'] = (flex_file['Median'] / 4)
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
prop_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
prop_file.astype('int').dtypes
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['Weighted_over'] = players_only['Player'].map(weighted_dict)
players_only['Weighted_under'] = 1 - players_only['Player'].map(weighted_dict)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = prop_check[prop_check >= 1].count(axis=1)/float(total_sims)
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = players_only[["Over", "Weighted_over", "Imp Over"]].mean(axis=1)
players_only['Under'] = prop_check[prop_check < 1].count(axis=1)/float(total_sims)
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = players_only[["Under", "Weighted_under", "Imp Under"]].mean(axis=1)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = np.where(.25 - players_only['Prop_avg'] < .10, .10, .25 - players_only['Prop_avg'])
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
final_outcomes = final_outcomes.set_index('Player')
with df_hold_container:
df_hold_container = st.empty()
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with export_container:
export_container = st.empty()
st.download_button(
label="Export Projections",
data=convert_df_to_csv(final_outcomes),
file_name='NBA_DFS_prop_proj.csv',
mime='text/csv',
key='prop_proj',
)
with tab4:
st.info('Coming soon!') |