Spaces:
Running
Running
James McCool
commited on
Commit
·
dfa08e1
1
Parent(s):
7ae617b
Added a Props_DB database conn, added a new tab for prop market
Browse files
app.py
CHANGED
@@ -51,15 +51,16 @@ def init_conn():
|
|
51 |
uri = st.secrets['mongo_uri']
|
52 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
|
53 |
db = client["NBA_DFS"]
|
|
|
54 |
|
55 |
NBA_Data = st.secrets['NBA_Data']
|
56 |
|
57 |
gc_con = gspread.service_account_from_dict(credentials)
|
58 |
gc_con2 = gspread.service_account_from_dict(credentials2)
|
59 |
|
60 |
-
return gc_con, gc_con2, db, NBA_Data
|
61 |
|
62 |
-
gcservice_account, gcservice_account2, db, NBA_Data = init_conn()
|
63 |
|
64 |
game_format = {'Paydirt Win%': '{:.2%}', 'Vegas Win%': '{:.2%}'}
|
65 |
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
|
@@ -156,21 +157,50 @@ def init_baselines():
|
|
156 |
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
|
157 |
'Trey Murphy III', 'Cam Thomas'], inplace=True)
|
158 |
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
def convert_df_to_csv(df):
|
162 |
return df.to_csv().encode('utf-8')
|
163 |
|
164 |
-
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
165 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
166 |
|
167 |
-
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "Player Projections", "Prop Trend Table", "Player Prop Simulations", "Stat Specific Simulations"])
|
168 |
|
169 |
with tab1:
|
170 |
st.info(t_stamp)
|
171 |
if st.button("Reset Data", key='reset1'):
|
172 |
st.cache_data.clear()
|
173 |
-
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
174 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
175 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
176 |
team_frame = game_model
|
@@ -193,9 +223,44 @@ with tab1:
|
|
193 |
|
194 |
with tab2:
|
195 |
st.info(t_stamp)
|
196 |
-
if st.button("Reset Data", key='
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
st.cache_data.clear()
|
198 |
-
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
199 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
200 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
201 |
if split_var1 == 'Specific Teams':
|
@@ -213,11 +278,11 @@ with tab2:
|
|
213 |
mime='text/csv',
|
214 |
)
|
215 |
|
216 |
-
with
|
217 |
st.info(t_stamp)
|
218 |
-
if st.button("Reset Data", key='
|
219 |
st.cache_data.clear()
|
220 |
-
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
221 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
222 |
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
|
223 |
if split_var5 == 'Specific Teams':
|
@@ -242,11 +307,11 @@ with tab3:
|
|
242 |
mime='text/csv',
|
243 |
)
|
244 |
|
245 |
-
with
|
246 |
st.info(t_stamp)
|
247 |
-
if st.button("Reset Data", key='
|
248 |
st.cache_data.clear()
|
249 |
-
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
250 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
251 |
col1, col2 = st.columns([1, 5])
|
252 |
|
@@ -389,12 +454,12 @@ with tab4:
|
|
389 |
plot_hold_container = st.empty()
|
390 |
st.plotly_chart(fig, use_container_width=True)
|
391 |
|
392 |
-
with
|
393 |
st.info(t_stamp)
|
394 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
395 |
if st.button("Reset Data/Load Data", key='reset6'):
|
396 |
st.cache_data.clear()
|
397 |
-
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
398 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
399 |
col1, col2 = st.columns([1, 5])
|
400 |
|
|
|
51 |
uri = st.secrets['mongo_uri']
|
52 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
|
53 |
db = client["NBA_DFS"]
|
54 |
+
prop_db = client["Props_DB"]
|
55 |
|
56 |
NBA_Data = st.secrets['NBA_Data']
|
57 |
|
58 |
gc_con = gspread.service_account_from_dict(credentials)
|
59 |
gc_con2 = gspread.service_account_from_dict(credentials2)
|
60 |
|
61 |
+
return gc_con, gc_con2, db, prop_db, NBA_Data
|
62 |
|
63 |
+
gcservice_account, gcservice_account2, db, prop_db, NBA_Data = init_conn()
|
64 |
|
65 |
game_format = {'Paydirt Win%': '{:.2%}', 'Vegas Win%': '{:.2%}'}
|
66 |
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
|
|
|
157 |
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
|
158 |
'Trey Murphy III', 'Cam Thomas'], inplace=True)
|
159 |
|
160 |
+
collection = prop_db["NBA_Props"]
|
161 |
+
cursor = collection.find()
|
162 |
+
|
163 |
+
raw_display = pd.DataFrame(list(cursor))
|
164 |
+
market_props = raw_display[['Name', 'Position', 'Projection', 'PropType', 'OddsType', 'over_pay', 'under_pay']]
|
165 |
+
market_props['over_prop'] = market_props['Projection']
|
166 |
+
market_props['over_line'] = market_props['over_pay'].apply(lambda x: (x - 1) * 100 if x >= 2.0 else -100 / (x - 1))
|
167 |
+
market_props['under_prop'] = market_props['Projection']
|
168 |
+
market_props['under_line'] = market_props['under_pay'].apply(lambda x: (x - 1) * 100 if x >= 2.0 else -100 / (x - 1))
|
169 |
+
|
170 |
+
return game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp
|
171 |
+
|
172 |
+
def calculate_no_vig(row):
|
173 |
+
def implied_probability(american_odds):
|
174 |
+
if american_odds < 0:
|
175 |
+
return (-american_odds) / ((-american_odds) + 100)
|
176 |
+
else:
|
177 |
+
return 100 / (american_odds + 100)
|
178 |
+
|
179 |
+
over_line = row['over_line']
|
180 |
+
under_line = row['under_line']
|
181 |
+
over_prop = row['over_prop']
|
182 |
+
|
183 |
+
over_prob = implied_probability(over_line)
|
184 |
+
under_prob = implied_probability(under_line)
|
185 |
+
|
186 |
+
total_prob = over_prob + under_prob
|
187 |
+
no_vig_prob = (over_prob / total_prob + 0.5) * over_prop
|
188 |
+
|
189 |
+
return no_vig_prob
|
190 |
|
191 |
def convert_df_to_csv(df):
|
192 |
return df.to_csv().encode('utf-8')
|
193 |
|
194 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
|
195 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
196 |
|
197 |
+
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", 'Prop Market', "Player Projections", "Prop Trend Table", "Player Prop Simulations", "Stat Specific Simulations"])
|
198 |
|
199 |
with tab1:
|
200 |
st.info(t_stamp)
|
201 |
if st.button("Reset Data", key='reset1'):
|
202 |
st.cache_data.clear()
|
203 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
|
204 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
205 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
206 |
team_frame = game_model
|
|
|
223 |
|
224 |
with tab2:
|
225 |
st.info(t_stamp)
|
226 |
+
if st.button("Reset Data", key='reset1'):
|
227 |
+
st.cache_data.clear()
|
228 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
|
229 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
230 |
+
market_type = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options, key = 'market_type_key')
|
231 |
+
disp_market = market_props.copy()
|
232 |
+
disp_market = disp_market[disp_market['PropType'] == market_type]
|
233 |
+
disp_market['No_Vig_Prop'] = disp_market.apply(calculate_no_vig, axis=1)
|
234 |
+
fanduel_frame = disp_market[disp_market['OddsType'] == 'FANDUEL']
|
235 |
+
fanduel_dict = dict(zip(fanduel_frame['Name'], fanduel_frame['No_Vig_Prop']))
|
236 |
+
draftkings_frame = disp_market[disp_market['OddsType'] == 'DRAFTKINGS']
|
237 |
+
draftkings_dict = dict(zip(draftkings_frame['Name'], draftkings_frame['No_Vig_Prop']))
|
238 |
+
mgm_frame = disp_market[disp_market['OddsType'] == 'MGM']
|
239 |
+
mgm_dict = dict(zip(mgm_frame['Name'], mgm_frame['No_Vig_Prop']))
|
240 |
+
bet365_frame = disp_market[disp_market['OddsType'] == 'BET_365']
|
241 |
+
bet365_dict = dict(zip(bet365_frame['Name'], bet365_frame['No_Vig_Prop']))
|
242 |
+
|
243 |
+
disp_market['FANDUEL'] = disp_market['Name'].map(fanduel_dict)
|
244 |
+
disp_market['DRAFTKINGS'] = disp_market['Name'].map(draftkings_dict)
|
245 |
+
disp_market['MGM'] = disp_market['Name'].map(mgm_dict)
|
246 |
+
disp_market['BET365'] = disp_market['Name'].map(bet365_dict)
|
247 |
+
|
248 |
+
disp_market = disp_market[['Name', 'Position','FANDUEL', 'DRAFTKINGS', 'MGM', 'BET365']]
|
249 |
+
disp_market = disp_market.drop_duplicates(subset=['Name'], keep='first', ignore_index=True)
|
250 |
+
|
251 |
+
st.dataframe(disp_market.style.background_gradient(axis=1, subset=['FANDUEL', 'DRAFTKINGS', 'MGM', 'BET365'], cmap='RdYlGn').format(prop_format, precision=2), height = 1000, use_container_width = True)
|
252 |
+
st.download_button(
|
253 |
+
label="Export Market Props",
|
254 |
+
data=convert_df_to_csv(disp_market),
|
255 |
+
file_name='NFL_market_props_export.csv',
|
256 |
+
mime='text/csv',
|
257 |
+
)
|
258 |
+
|
259 |
+
with tab3:
|
260 |
+
st.info(t_stamp)
|
261 |
+
if st.button("Reset Data", key='reset3'):
|
262 |
st.cache_data.clear()
|
263 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
|
264 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
265 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
266 |
if split_var1 == 'Specific Teams':
|
|
|
278 |
mime='text/csv',
|
279 |
)
|
280 |
|
281 |
+
with tab4:
|
282 |
st.info(t_stamp)
|
283 |
+
if st.button("Reset Data", key='reset4'):
|
284 |
st.cache_data.clear()
|
285 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
|
286 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
287 |
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
|
288 |
if split_var5 == 'Specific Teams':
|
|
|
307 |
mime='text/csv',
|
308 |
)
|
309 |
|
310 |
+
with tab5:
|
311 |
st.info(t_stamp)
|
312 |
+
if st.button("Reset Data", key='reset5'):
|
313 |
st.cache_data.clear()
|
314 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
|
315 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
316 |
col1, col2 = st.columns([1, 5])
|
317 |
|
|
|
454 |
plot_hold_container = st.empty()
|
455 |
st.plotly_chart(fig, use_container_width=True)
|
456 |
|
457 |
+
with tab6:
|
458 |
st.info(t_stamp)
|
459 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
460 |
if st.button("Reset Data/Load Data", key='reset6'):
|
461 |
st.cache_data.clear()
|
462 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
|
463 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
464 |
col1, col2 = st.columns([1, 5])
|
465 |
|