James McCool commited on
Commit
dfa08e1
·
1 Parent(s): 7ae617b

Added a Props_DB database conn, added a new tab for prop market

Browse files
Files changed (1) hide show
  1. app.py +81 -16
app.py CHANGED
@@ -51,15 +51,16 @@ def init_conn():
51
  uri = st.secrets['mongo_uri']
52
  client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
53
  db = client["NBA_DFS"]
 
54
 
55
  NBA_Data = st.secrets['NBA_Data']
56
 
57
  gc_con = gspread.service_account_from_dict(credentials)
58
  gc_con2 = gspread.service_account_from_dict(credentials2)
59
 
60
- return gc_con, gc_con2, db, NBA_Data
61
 
62
- gcservice_account, gcservice_account2, db, NBA_Data = init_conn()
63
 
64
  game_format = {'Paydirt Win%': '{:.2%}', 'Vegas Win%': '{:.2%}'}
65
  prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
@@ -156,21 +157,50 @@ def init_baselines():
156
  ['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
157
  'Trey Murphy III', 'Cam Thomas'], inplace=True)
158
 
159
- return game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
 
161
  def convert_df_to_csv(df):
162
  return df.to_csv().encode('utf-8')
163
 
164
- game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
165
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
166
 
167
- tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "Player Projections", "Prop Trend Table", "Player Prop Simulations", "Stat Specific Simulations"])
168
 
169
  with tab1:
170
  st.info(t_stamp)
171
  if st.button("Reset Data", key='reset1'):
172
  st.cache_data.clear()
173
- game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
174
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
175
  line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
176
  team_frame = game_model
@@ -193,9 +223,44 @@ with tab1:
193
 
194
  with tab2:
195
  st.info(t_stamp)
196
- if st.button("Reset Data", key='reset2'):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
  st.cache_data.clear()
198
- game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
199
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
200
  split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
201
  if split_var1 == 'Specific Teams':
@@ -213,11 +278,11 @@ with tab2:
213
  mime='text/csv',
214
  )
215
 
216
- with tab3:
217
  st.info(t_stamp)
218
- if st.button("Reset Data", key='reset3'):
219
  st.cache_data.clear()
220
- game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
221
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
222
  split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
223
  if split_var5 == 'Specific Teams':
@@ -242,11 +307,11 @@ with tab3:
242
  mime='text/csv',
243
  )
244
 
245
- with tab4:
246
  st.info(t_stamp)
247
- if st.button("Reset Data", key='reset4'):
248
  st.cache_data.clear()
249
- game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
250
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
251
  col1, col2 = st.columns([1, 5])
252
 
@@ -389,12 +454,12 @@ with tab4:
389
  plot_hold_container = st.empty()
390
  st.plotly_chart(fig, use_container_width=True)
391
 
392
- with tab5:
393
  st.info(t_stamp)
394
  st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
395
  if st.button("Reset Data/Load Data", key='reset6'):
396
  st.cache_data.clear()
397
- game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
398
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
399
  col1, col2 = st.columns([1, 5])
400
 
 
51
  uri = st.secrets['mongo_uri']
52
  client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
53
  db = client["NBA_DFS"]
54
+ prop_db = client["Props_DB"]
55
 
56
  NBA_Data = st.secrets['NBA_Data']
57
 
58
  gc_con = gspread.service_account_from_dict(credentials)
59
  gc_con2 = gspread.service_account_from_dict(credentials2)
60
 
61
+ return gc_con, gc_con2, db, prop_db, NBA_Data
62
 
63
+ gcservice_account, gcservice_account2, db, prop_db, NBA_Data = init_conn()
64
 
65
  game_format = {'Paydirt Win%': '{:.2%}', 'Vegas Win%': '{:.2%}'}
66
  prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
 
157
  ['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
158
  'Trey Murphy III', 'Cam Thomas'], inplace=True)
159
 
160
+ collection = prop_db["NBA_Props"]
161
+ cursor = collection.find()
162
+
163
+ raw_display = pd.DataFrame(list(cursor))
164
+ market_props = raw_display[['Name', 'Position', 'Projection', 'PropType', 'OddsType', 'over_pay', 'under_pay']]
165
+ market_props['over_prop'] = market_props['Projection']
166
+ market_props['over_line'] = market_props['over_pay'].apply(lambda x: (x - 1) * 100 if x >= 2.0 else -100 / (x - 1))
167
+ market_props['under_prop'] = market_props['Projection']
168
+ market_props['under_line'] = market_props['under_pay'].apply(lambda x: (x - 1) * 100 if x >= 2.0 else -100 / (x - 1))
169
+
170
+ return game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp
171
+
172
+ def calculate_no_vig(row):
173
+ def implied_probability(american_odds):
174
+ if american_odds < 0:
175
+ return (-american_odds) / ((-american_odds) + 100)
176
+ else:
177
+ return 100 / (american_odds + 100)
178
+
179
+ over_line = row['over_line']
180
+ under_line = row['under_line']
181
+ over_prop = row['over_prop']
182
+
183
+ over_prob = implied_probability(over_line)
184
+ under_prob = implied_probability(under_line)
185
+
186
+ total_prob = over_prob + under_prob
187
+ no_vig_prob = (over_prob / total_prob + 0.5) * over_prop
188
+
189
+ return no_vig_prob
190
 
191
  def convert_df_to_csv(df):
192
  return df.to_csv().encode('utf-8')
193
 
194
+ game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
195
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
196
 
197
+ tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", 'Prop Market', "Player Projections", "Prop Trend Table", "Player Prop Simulations", "Stat Specific Simulations"])
198
 
199
  with tab1:
200
  st.info(t_stamp)
201
  if st.button("Reset Data", key='reset1'):
202
  st.cache_data.clear()
203
+ game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
204
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
205
  line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
206
  team_frame = game_model
 
223
 
224
  with tab2:
225
  st.info(t_stamp)
226
+ if st.button("Reset Data", key='reset1'):
227
+ st.cache_data.clear()
228
+ game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
229
+ t_stamp = f"Last Update: " + str(timestamp) + f" CST"
230
+ market_type = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options, key = 'market_type_key')
231
+ disp_market = market_props.copy()
232
+ disp_market = disp_market[disp_market['PropType'] == market_type]
233
+ disp_market['No_Vig_Prop'] = disp_market.apply(calculate_no_vig, axis=1)
234
+ fanduel_frame = disp_market[disp_market['OddsType'] == 'FANDUEL']
235
+ fanduel_dict = dict(zip(fanduel_frame['Name'], fanduel_frame['No_Vig_Prop']))
236
+ draftkings_frame = disp_market[disp_market['OddsType'] == 'DRAFTKINGS']
237
+ draftkings_dict = dict(zip(draftkings_frame['Name'], draftkings_frame['No_Vig_Prop']))
238
+ mgm_frame = disp_market[disp_market['OddsType'] == 'MGM']
239
+ mgm_dict = dict(zip(mgm_frame['Name'], mgm_frame['No_Vig_Prop']))
240
+ bet365_frame = disp_market[disp_market['OddsType'] == 'BET_365']
241
+ bet365_dict = dict(zip(bet365_frame['Name'], bet365_frame['No_Vig_Prop']))
242
+
243
+ disp_market['FANDUEL'] = disp_market['Name'].map(fanduel_dict)
244
+ disp_market['DRAFTKINGS'] = disp_market['Name'].map(draftkings_dict)
245
+ disp_market['MGM'] = disp_market['Name'].map(mgm_dict)
246
+ disp_market['BET365'] = disp_market['Name'].map(bet365_dict)
247
+
248
+ disp_market = disp_market[['Name', 'Position','FANDUEL', 'DRAFTKINGS', 'MGM', 'BET365']]
249
+ disp_market = disp_market.drop_duplicates(subset=['Name'], keep='first', ignore_index=True)
250
+
251
+ st.dataframe(disp_market.style.background_gradient(axis=1, subset=['FANDUEL', 'DRAFTKINGS', 'MGM', 'BET365'], cmap='RdYlGn').format(prop_format, precision=2), height = 1000, use_container_width = True)
252
+ st.download_button(
253
+ label="Export Market Props",
254
+ data=convert_df_to_csv(disp_market),
255
+ file_name='NFL_market_props_export.csv',
256
+ mime='text/csv',
257
+ )
258
+
259
+ with tab3:
260
+ st.info(t_stamp)
261
+ if st.button("Reset Data", key='reset3'):
262
  st.cache_data.clear()
263
+ game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
264
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
265
  split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
266
  if split_var1 == 'Specific Teams':
 
278
  mime='text/csv',
279
  )
280
 
281
+ with tab4:
282
  st.info(t_stamp)
283
+ if st.button("Reset Data", key='reset4'):
284
  st.cache_data.clear()
285
+ game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
286
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
287
  split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
288
  if split_var5 == 'Specific Teams':
 
307
  mime='text/csv',
308
  )
309
 
310
+ with tab5:
311
  st.info(t_stamp)
312
+ if st.button("Reset Data", key='reset5'):
313
  st.cache_data.clear()
314
+ game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
315
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
316
  col1, col2 = st.columns([1, 5])
317
 
 
454
  plot_hold_container = st.empty()
455
  st.plotly_chart(fig, use_container_width=True)
456
 
457
+ with tab6:
458
  st.info(t_stamp)
459
  st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
460
  if st.button("Reset Data/Load Data", key='reset6'):
461
  st.cache_data.clear()
462
+ game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
463
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
464
  col1, col2 = st.columns([1, 5])
465