Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,8 +9,6 @@ import numpy as np
|
|
9 |
import pandas as pd
|
10 |
import streamlit as st
|
11 |
import gspread
|
12 |
-
import plotly.express as px
|
13 |
-
import random
|
14 |
import gc
|
15 |
|
16 |
@st.cache_resource
|
@@ -38,6 +36,9 @@ gcservice_account = init_conn()
|
|
38 |
|
39 |
DEM_data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
|
40 |
|
|
|
|
|
|
|
41 |
@st.cache_resource(ttl = 600)
|
42 |
def init_baselines():
|
43 |
sh = gcservice_account.open_by_url(DEM_data)
|
@@ -129,7 +130,7 @@ with col2:
|
|
129 |
dem_display = dem_display[dem_display['position'].isin(pos_var1)]
|
130 |
dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False)
|
131 |
dem_display.rename(columns={"Acro": "Team (Giving Boost)"}, inplace = True)
|
132 |
-
st.dataframe(dem_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
133 |
st.download_button(
|
134 |
label="Export DEM Numbers",
|
135 |
data=convert_df_to_csv(overall_dem),
|
|
|
9 |
import pandas as pd
|
10 |
import streamlit as st
|
11 |
import gspread
|
|
|
|
|
12 |
import gc
|
13 |
|
14 |
@st.cache_resource
|
|
|
36 |
|
37 |
DEM_data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
|
38 |
|
39 |
+
percentages_format = {'Pts% Boost': '{:.2%}', 'Reb% Boost': '{:.2%}', 'Ast% Boost': '{:.2%}', '3p% Boost': '{:.2%}',
|
40 |
+
'Stl Boost%': '{:.2%}', 'Blk Boost%': '{:.2%}', 'TOV Boost%': '{:.2%}', 'FPPM Boost': '{:.2%}'}
|
41 |
+
|
42 |
@st.cache_resource(ttl = 600)
|
43 |
def init_baselines():
|
44 |
sh = gcservice_account.open_by_url(DEM_data)
|
|
|
130 |
dem_display = dem_display[dem_display['position'].isin(pos_var1)]
|
131 |
dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False)
|
132 |
dem_display.rename(columns={"Acro": "Team (Giving Boost)"}, inplace = True)
|
133 |
+
st.dataframe(dem_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
|
134 |
st.download_button(
|
135 |
label="Export DEM Numbers",
|
136 |
data=convert_df_to_csv(overall_dem),
|