Multichem commited on
Commit
84bb751
·
1 Parent(s): c6144e0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -9,8 +9,6 @@ import numpy as np
9
  import pandas as pd
10
  import streamlit as st
11
  import gspread
12
- import plotly.express as px
13
- import random
14
  import gc
15
 
16
  @st.cache_resource
@@ -38,6 +36,9 @@ gcservice_account = init_conn()
38
 
39
  DEM_data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
40
 
 
 
 
41
  @st.cache_resource(ttl = 600)
42
  def init_baselines():
43
  sh = gcservice_account.open_by_url(DEM_data)
@@ -129,7 +130,7 @@ with col2:
129
  dem_display = dem_display[dem_display['position'].isin(pos_var1)]
130
  dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False)
131
  dem_display.rename(columns={"Acro": "Team (Giving Boost)"}, inplace = True)
132
- st.dataframe(dem_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
133
  st.download_button(
134
  label="Export DEM Numbers",
135
  data=convert_df_to_csv(overall_dem),
 
9
  import pandas as pd
10
  import streamlit as st
11
  import gspread
 
 
12
  import gc
13
 
14
  @st.cache_resource
 
36
 
37
  DEM_data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
38
 
39
+ percentages_format = {'Pts% Boost': '{:.2%}', 'Reb% Boost': '{:.2%}', 'Ast% Boost': '{:.2%}', '3p% Boost': '{:.2%}',
40
+ 'Stl Boost%': '{:.2%}', 'Blk Boost%': '{:.2%}', 'TOV Boost%': '{:.2%}', 'FPPM Boost': '{:.2%}'}
41
+
42
  @st.cache_resource(ttl = 600)
43
  def init_baselines():
44
  sh = gcservice_account.open_by_url(DEM_data)
 
130
  dem_display = dem_display[dem_display['position'].isin(pos_var1)]
131
  dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False)
132
  dem_display.rename(columns={"Acro": "Team (Giving Boost)"}, inplace = True)
133
+ st.dataframe(dem_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
134
  st.download_button(
135
  label="Export DEM Numbers",
136
  data=convert_df_to_csv(overall_dem),