Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -42,7 +42,15 @@ percentages_format = {'Pts% Boost': '{:.2%}', 'Reb% Boost': '{:.2%}', 'Ast% Boos
|
|
42 |
@st.cache_resource(ttl = 600)
|
43 |
def init_baselines():
|
44 |
sh = gcservice_account.open_by_url(DEM_data)
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
worksheet = sh.worksheet('PG_DEM_Calc')
|
47 |
raw_display = pd.DataFrame(worksheet.get_values())
|
48 |
raw_display.columns = raw_display.iloc[0]
|
@@ -107,34 +115,45 @@ def init_baselines():
|
|
107 |
export_dem = overall_dem[['Team', 'Acro', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost',
|
108 |
'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'position']]
|
109 |
|
110 |
-
return export_dem
|
111 |
|
112 |
def convert_df_to_csv(df):
|
113 |
return df.to_csv().encode('utf-8')
|
114 |
|
115 |
-
overall_dem = init_baselines()
|
116 |
|
117 |
col1, col2 = st.columns([1, 9])
|
118 |
with col1:
|
119 |
if st.button("Reset Data", key='reset1'):
|
120 |
st.cache_data.clear()
|
121 |
-
overall_dem = init_baselines()
|
122 |
-
split_var1 = st.radio("
|
123 |
-
if split_var1 == '
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
132 |
with col2:
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
st.dataframe(dem_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
|
139 |
st.download_button(
|
140 |
label="Export DEM Numbers",
|
|
|
42 |
@st.cache_resource(ttl = 600)
|
43 |
def init_baselines():
|
44 |
sh = gcservice_account.open_by_url(DEM_data)
|
45 |
+
|
46 |
+
worksheet = sh.worksheet('DEM Matchups')
|
47 |
+
raw_display = pd.DataFrame(worksheet.get_values())
|
48 |
+
raw_display.columns = raw_display.iloc[0]
|
49 |
+
raw_display = raw_display[1:]
|
50 |
+
raw_display = raw_display.reset_index(drop=True)
|
51 |
+
matchups = raw_display[raw_display['Var'] != ""]
|
52 |
+
matchups_dict = dict(zip(matchups['Team'], matchups['Opp']))
|
53 |
+
|
54 |
worksheet = sh.worksheet('PG_DEM_Calc')
|
55 |
raw_display = pd.DataFrame(worksheet.get_values())
|
56 |
raw_display.columns = raw_display.iloc[0]
|
|
|
115 |
export_dem = overall_dem[['Team', 'Acro', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost',
|
116 |
'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'position']]
|
117 |
|
118 |
+
return export_dem, matchups, matchups_dict
|
119 |
|
120 |
def convert_df_to_csv(df):
|
121 |
return df.to_csv().encode('utf-8')
|
122 |
|
123 |
+
overall_dem, matchups, matchups_dict = init_baselines()
|
124 |
|
125 |
col1, col2 = st.columns([1, 9])
|
126 |
with col1:
|
127 |
if st.button("Reset Data", key='reset1'):
|
128 |
st.cache_data.clear()
|
129 |
+
overall_dem, matchups, matchups_dict = init_baselines()
|
130 |
+
split_var1 = st.radio("View all teams or just this main slate's matchups?", ('Slate Matchups', 'All'), key='split_var1')
|
131 |
+
if split_var1 == 'Slate Matchups':
|
132 |
+
view_var1 = matchups.Opp.values.tolist()
|
133 |
+
if split_var1 == 'All':
|
134 |
+
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
135 |
+
if split_var2 == 'Specific Teams':
|
136 |
+
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['Acro'].unique(), key='team_var1')
|
137 |
+
elif split_var2 == 'All':
|
138 |
+
team_var1 = overall_dem.Acro.values.tolist()
|
139 |
+
split_var3 = st.radio("Would you like to view all positions or specific ones?", ('All', 'Specific Positions'), key='split_var3')
|
140 |
+
if split_var3 == 'Specific Positions':
|
141 |
+
pos_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['position'].unique(), key='pos_var1')
|
142 |
+
elif split_var3 == 'All':
|
143 |
+
pos_var1 = overall_dem.position.values.tolist()
|
144 |
with col2:
|
145 |
+
if split_var1 == 'Slate Matchups':
|
146 |
+
dem_display = overall_dem[overall_dem['Acro'].isin(view_var1)]
|
147 |
+
dem_display['Team (Getting Boost)'] = dem_display['Acro'].map(matchups_dict)
|
148 |
+
dem_display.rename(columns={"Acro": "Opp (Giving Boost)"}, inplace = True)
|
149 |
+
dem_display = dem_display.set_index('Team (Getting Boost)')
|
150 |
+
dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False)
|
151 |
+
elif split_var1 == 'All':
|
152 |
+
dem_display = overall_dem[overall_dem['Acro'].isin(team_var1)]
|
153 |
+
dem_display = dem_display[dem_display['position'].isin(pos_var1)]
|
154 |
+
dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False)
|
155 |
+
dem_display.rename(columns={"Team": "Team (Giving Boost)"}, inplace = True)
|
156 |
+
dem_display = dem_display.set_index('Team (Giving Boost)')
|
157 |
st.dataframe(dem_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
|
158 |
st.download_button(
|
159 |
label="Export DEM Numbers",
|