Multichem commited on
Commit
995f524
·
1 Parent(s): f2b9211

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +118 -0
app.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ st.set_page_config(layout="wide")
3
+
4
+ for name in dir():
5
+ if not name.startswith('_'):
6
+ del globals()[name]
7
+
8
+ import numpy as np
9
+ import pandas as pd
10
+ import streamlit as st
11
+ import gspread
12
+ import plotly.express as px
13
+ import random
14
+ import gc
15
+
16
+ @st.cache_resource
17
+ def init_conn():
18
+ scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
19
+
20
+ credentials = {
21
+ "type": "service_account",
22
+ "project_id": "model-sheets-connect",
23
+ "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
24
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
25
+ "client_email": "[email protected]",
26
+ "client_id": "100369174533302798535",
27
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
28
+ "token_uri": "https://oauth2.googleapis.com/token",
29
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
30
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
31
+ }
32
+
33
+ gc_con = gspread.service_account_from_dict(credentials, scope)
34
+
35
+ return gc_con
36
+
37
+ gcservice_account = init_conn()
38
+
39
+ DEM_data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
40
+
41
+ @st.cache_resource(ttl = 600)
42
+ def init_baselines():
43
+ sh = gcservice_account.open_by_url(DEM_data)
44
+
45
+ worksheet = sh.worksheet('PG_DEM_Calc')
46
+ raw_display = pd.DataFrame(worksheet.get_values())
47
+ raw_display.columns = raw_display.iloc[0]
48
+ raw_display = raw_display[1:]
49
+ raw_display = raw_display.reset_index(drop=True)
50
+ raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
51
+ raw_display['position'] = 'Point Guard'
52
+ pg_dem = raw_display[raw_display['Acro'] != ""]
53
+
54
+ worksheet = sh.worksheet('SG_DEM_Calc')
55
+ raw_display = pd.DataFrame(worksheet.get_values())
56
+ raw_display.columns = raw_display.iloc[0]
57
+ raw_display = raw_display[1:]
58
+ raw_display = raw_display.reset_index(drop=True)
59
+ raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
60
+ raw_display['position'] = 'Shooting Guard'
61
+ sg_dem = raw_display[raw_display['Acro'] != ""]
62
+
63
+ worksheet = sh.worksheet('SF_DEM_Calc')
64
+ raw_display = pd.DataFrame(worksheet.get_values())
65
+ raw_display.columns = raw_display.iloc[0]
66
+ raw_display = raw_display[1:]
67
+ raw_display = raw_display.reset_index(drop=True)
68
+ raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
69
+ raw_display['position'] = 'Small Forward'
70
+ sf_dem = raw_display[raw_display['Acro'] != ""]
71
+
72
+ worksheet = sh.worksheet('PF_DEM_Calc')
73
+ raw_display = pd.DataFrame(worksheet.get_values())
74
+ raw_display.columns = raw_display.iloc[0]
75
+ raw_display = raw_display[1:]
76
+ raw_display = raw_display.reset_index(drop=True)
77
+ raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
78
+ raw_display['position'] = 'Power Forward'
79
+ pf_dem = raw_display[raw_display['Acro'] != ""]
80
+
81
+ worksheet = sh.worksheet('C_DEM_Calc')
82
+ raw_display = pd.DataFrame(worksheet.get_values())
83
+ raw_display.columns = raw_display.iloc[0]
84
+ raw_display = raw_display[1:]
85
+ raw_display = raw_display.reset_index(drop=True)
86
+ raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
87
+ raw_display['position'] = 'Center'
88
+ c_dem = raw_display[raw_display['Acro'] != ""]
89
+
90
+ overall_dem = pd.concat([pg_dem, sg_dem, sf_dem, pf_dem, c_dem])
91
+ overall_dem = overall_dem[['Acro', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost',
92
+ 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'position']]
93
+
94
+ return overall_dem
95
+
96
+ def convert_df_to_csv(df):
97
+ return df.to_csv().encode('utf-8')
98
+
99
+ overall_dem = init_baselines()
100
+
101
+ if st.button("Reset Data", key='reset1'):
102
+ st.cache_data.clear()
103
+ overall_dem = init_baselines()
104
+ # split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
105
+ # if split_var1 == 'Specific Teams':
106
+ # team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = public_minutes['TC'].unique(), key='team_var1')
107
+ # elif split_var1 == 'All':
108
+ # team_var1 = public_minutes.TC.values.tolist()
109
+ # public_minutes = public_minutes[public_minutes['TC'].isin(team_var1)]
110
+ # player_min_disp = public_minutes.set_index('Player')
111
+ # player_min_disp = player_min_disp.sort_values(by=['TC', 'MP (Today)'], ascending=[True, False])
112
+ st.dataframe(overall_dem.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
113
+ st.download_button(
114
+ label="Export Minutes Baselines",
115
+ data=convert_df_to_csv(overall_dem),
116
+ file_name='DEM_export.csv',
117
+ mime='text/csv',
118
+ )