import streamlit as st st.set_page_config(layout="wide") for name in dir(): if not name.startswith('_'): del globals()[name] import numpy as np import pandas as pd import streamlit as st import gspread import gc @st.cache_resource def init_conn(): scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] credentials = { "type": "service_account", "project_id": "model-sheets-connect", "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e", "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n", "client_email": "gspread-connection@model-sheets-connect.iam.gserviceaccount.com", "client_id": "100369174533302798535", "auth_uri": "https://accounts.google.com/o/oauth2/auth", "token_uri": "https://oauth2.googleapis.com/token", "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com" } gc_con = gspread.service_account_from_dict(credentials, scope) return gc_con gcservice_account = init_conn() DEM_data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109' percentages_format = {'Pts% Boost': '{:.2%}', 'Reb% Boost': '{:.2%}', 'Ast% Boost': '{:.2%}', '3p% Boost': '{:.2%}', 'Stl Boost%': '{:.2%}', 'Blk Boost%': '{:.2%}', 'TOV Boost%': '{:.2%}', 'FPPM Boost': '{:.2%}', 'Team FPPM Boost': '{:.2%}'} @st.cache_resource(ttl = 600) def init_baselines(): sh = gcservice_account.open_by_url(DEM_data) worksheet = sh.worksheet('DEM Matchups') raw_display = pd.DataFrame(worksheet.get_values()) raw_display.columns = raw_display.iloc[0] raw_display = raw_display[1:] raw_display = raw_display.reset_index(drop=True) matchups = raw_display[raw_display['Var'] != ""] matchups_dict = dict(zip(matchups['Team'], matchups['Opp'])) worksheet = sh.worksheet('PG_DEM_Calc') raw_display = pd.DataFrame(worksheet.get_values()) raw_display.columns = raw_display.iloc[0] raw_display = raw_display[1:] raw_display = raw_display.reset_index(drop=True) cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost'] raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100 raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display) raw_display['position'] = 'Point Guard' pg_dem = raw_display[raw_display['Acro'] != ""] worksheet = sh.worksheet('SG_DEM_Calc') raw_display = pd.DataFrame(worksheet.get_values()) raw_display.columns = raw_display.iloc[0] raw_display = raw_display[1:] raw_display = raw_display.reset_index(drop=True) cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost'] raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100 raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display) raw_display['position'] = 'Shooting Guard' sg_dem = raw_display[raw_display['Acro'] != ""] worksheet = sh.worksheet('SF_DEM_Calc') raw_display = pd.DataFrame(worksheet.get_values()) raw_display.columns = raw_display.iloc[0] raw_display = raw_display[1:] raw_display = raw_display.reset_index(drop=True) cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost'] raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100 raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display) raw_display['position'] = 'Small Forward' sf_dem = raw_display[raw_display['Acro'] != ""] worksheet = sh.worksheet('PF_DEM_Calc') raw_display = pd.DataFrame(worksheet.get_values()) raw_display.columns = raw_display.iloc[0] raw_display = raw_display[1:] raw_display = raw_display.reset_index(drop=True) cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost'] raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100 raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display) raw_display['position'] = 'Power Forward' pf_dem = raw_display[raw_display['Acro'] != ""] worksheet = sh.worksheet('C_DEM_Calc') raw_display = pd.DataFrame(worksheet.get_values()) raw_display.columns = raw_display.iloc[0] raw_display = raw_display[1:] raw_display = raw_display.reset_index(drop=True) cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost'] raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100 raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display) raw_display['position'] = 'Center' c_dem = raw_display[raw_display['Acro'] != ""] overall_dem = pd.concat([pg_dem, sg_dem, sf_dem, pf_dem, c_dem]) overall_dem = overall_dem[['Acro', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'position']] overall_dem['Team'] = overall_dem['Acro'] + '-' + overall_dem['position'] overall_dem['Team FPPM Boost'] = overall_dem.groupby('Acro', sort=False)['FPPM Boost'].transform('mean') overall_dem = overall_dem.reset_index() export_dem = overall_dem[['Team', 'Acro', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'Team FPPM Boost', 'position']] worksheet = sh.worksheet('DEM Matchups') timestamp = worksheet.acell('F1').value return export_dem, matchups, matchups_dict, timestamp def convert_df_to_csv(df): return df.to_csv().encode('utf-8') overall_dem, matchups, matchups_dict, timestamp = init_baselines() t_stamp = f"Updated through: " + str(timestamp) + f" CST" col1, col2 = st.columns([1, 9]) with col1: st.info(t_stamp) if st.button("Reset Data", key='reset1'): st.cache_data.clear() overall_dem, matchups, matchups_dict, t_stamp = init_baselines() split_var1 = st.radio("View all teams or just this main slate's matchups?", ('Slate Matchups', 'All'), key='split_var1') if split_var1 == 'Slate Matchups': view_var1 = matchups.Opp.values.tolist() split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2') if split_var2 == 'Specific Teams': team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = view_var1, key='team_var1') elif split_var2 == 'All': team_var1 = view_var1 split_var3 = st.radio("Would you like to view all positions or specific ones?", ('All', 'Specific Positions'), key='split_var3') if split_var3 == 'Specific Positions': pos_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['position'].unique(), key='pos_var1') elif split_var3 == 'All': pos_var1 = overall_dem.position.values.tolist() if split_var1 == 'All': split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2') if split_var2 == 'Specific Teams': team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['Acro'].unique(), key='team_var1') elif split_var2 == 'All': team_var1 = overall_dem.Acro.values.tolist() split_var3 = st.radio("Would you like to view all positions or specific ones?", ('All', 'Specific Positions'), key='split_var3') if split_var3 == 'Specific Positions': pos_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['position'].unique(), key='pos_var1') elif split_var3 == 'All': pos_var1 = overall_dem.position.values.tolist() with col2: if split_var1 == 'Slate Matchups': dem_display = overall_dem[overall_dem['Acro'].isin(view_var1)] dem_display['Team (Getting Boost)'] = dem_display['Acro'].map(matchups_dict) dem_display.rename(columns={"Acro": "Opp (Giving Boost)"}, inplace = True) dem_display = dem_display[['Team (Getting Boost)', 'Opp (Giving Boost)', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'Team FPPM Boost', 'position']] dem_display = dem_display[dem_display['Team (Getting Boost)'].isin(team_var1)] dem_display = dem_display[dem_display['position'].isin(pos_var1)] dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False) elif split_var1 == 'All': dem_display = overall_dem[overall_dem['Acro'].isin(team_var1)] dem_display = dem_display[dem_display['position'].isin(pos_var1)] dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False) dem_display.rename(columns={"Team": "Team (Giving Boost)"}, inplace = True) dem_display = dem_display.set_index('Team (Giving Boost)') st.dataframe(dem_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True) st.download_button( label="Export DEM Numbers", data=convert_df_to_csv(overall_dem), file_name='DEM_export.csv', mime='text/csv', )