Spaces:
Running
Running
James McCool
Refactor app.py: Update seed frame assignments to store working seeds in session state. Introduced dictionaries for player and player ID mapping for both DraftKings and FanDuel, enhancing data management and accessibility during simulations.
6334faa
import streamlit as st | |
st.set_page_config(layout="wide") | |
import numpy as np | |
import pandas as pd | |
import pymongo | |
import time | |
def init_conn(): | |
uri = st.secrets['mongo_uri'] | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client["NBA_DFS"] | |
return db | |
db = init_conn() | |
percentages_format = {'Exposure': '{:.2%}'} | |
freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'} | |
dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
def init_DK_seed_frames(load_size): | |
collection = db["DK_NBA_seed_frame"] | |
cursor = collection.find().limit(load_size) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
DK_seed = raw_display.to_numpy() | |
return DK_seed | |
def init_DK_secondary_seed_frames(load_size): | |
collection = db["DK_NBA_Secondary_seed_frame"] | |
cursor = collection.find().limit(load_size) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
DK_seed = raw_display.to_numpy() | |
return DK_seed | |
def init_FD_seed_frames(load_size): | |
collection = db["FD_NBA_seed_frame"] | |
cursor = collection.find().limit(load_size) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
FD_seed = raw_display.to_numpy() | |
return FD_seed | |
def init_FD_secondary_seed_frames(load_size): | |
collection = db["FD_NBA_Secondary_seed_frame"] | |
cursor = collection.find().limit(load_size) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
FD_seed = raw_display.to_numpy() | |
return FD_seed | |
def init_baselines(): | |
collection = db["Player_Range_Of_Outcomes"] | |
cursor = collection.find() | |
load_display = pd.DataFrame(list(cursor)) | |
load_display.replace('', np.nan, inplace=True) | |
load_display.rename(columns={"Fantasy": "Median", 'Name': 'Player', 'player_ID': 'player_id'}, inplace = True) | |
load_display = load_display[load_display['Median'] > 0] | |
dk_roo_raw = load_display[load_display['site'] == 'Draftkings'] | |
dk_roo_raw = dk_roo_raw[dk_roo_raw['slate'] == 'Main Slate'] | |
dk_roo_raw['STDev'] = dk_roo_raw['Median'] / 4 | |
dk_raw = dk_roo_raw.dropna(subset=['Median']) | |
fd_roo_raw = load_display[load_display['site'] == 'Fanduel'] | |
fd_roo_raw = fd_roo_raw[fd_roo_raw['slate'] == 'Main Slate'] | |
fd_roo_raw['STDev'] = fd_roo_raw['Median'] / 4 | |
fd_raw = fd_roo_raw.dropna(subset=['Median']) | |
dk_secondary_roo_raw = load_display[load_display['site'] == 'Draftkings'] | |
dk_secondary_roo_raw = dk_secondary_roo_raw[dk_secondary_roo_raw['slate'] == 'Secondary Slate'] | |
dk_secondary_roo_raw['STDev'] = dk_secondary_roo_raw['Median'] / 4 | |
dk_secondary = dk_secondary_roo_raw.dropna(subset=['Median']) | |
fd_secondary_roo_raw = load_display[load_display['site'] == 'Fanduel'] | |
fd_secondary_roo_raw = fd_secondary_roo_raw[fd_secondary_roo_raw['slate'] == 'Secondary Slate'] | |
fd_secondary_roo_raw['STDev'] = fd_secondary_roo_raw['Median'] / 4 | |
fd_secondary = fd_secondary_roo_raw.dropna(subset=['Median']) | |
return dk_raw, fd_raw, dk_secondary, fd_secondary | |
def convert_df(array): | |
array = pd.DataFrame(array, columns=column_names) | |
return array.to_csv().encode('utf-8') | |
def calculate_DK_value_frequencies(np_array): | |
unique, counts = np.unique(np_array[:, :8], return_counts=True) | |
frequencies = counts / len(np_array) # Normalize by the number of rows | |
combined_array = np.column_stack((unique, frequencies)) | |
return combined_array | |
def calculate_FD_value_frequencies(np_array): | |
unique, counts = np.unique(np_array[:, :9], return_counts=True) | |
frequencies = counts / len(np_array) # Normalize by the number of rows | |
combined_array = np.column_stack((unique, frequencies)) | |
return combined_array | |
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size): | |
SimVar = 1 | |
Sim_Winners = [] | |
# Pre-vectorize functions | |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__) | |
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__) | |
st.write('Simulating contest on frames') | |
while SimVar <= Sim_size: | |
fp_random = seed_frame[np.random.choice(seed_frame.shape[0], Contest_Size)] | |
sample_arrays1 = np.c_[ | |
fp_random, | |
np.sum(np.random.normal( | |
loc=vec_projection_map(fp_random[:, :-7]), | |
scale=vec_stdev_map(fp_random[:, :-7])), | |
axis=1) | |
] | |
sample_arrays = sample_arrays1 | |
if sim_site_var1 == 'Draftkings': | |
final_array = sample_arrays[sample_arrays[:, 9].argsort()[::-1]] | |
elif sim_site_var1 == 'Fanduel': | |
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]] | |
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]] | |
Sim_Winners.append(best_lineup) | |
SimVar += 1 | |
return Sim_Winners | |
dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines() | |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) | |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) | |
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export']) | |
with tab2: | |
col1, col2 = st.columns([1, 7]) | |
with col1: | |
if st.button("Load/Reset Data", key='reset1'): | |
st.cache_data.clear() | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
DK_seed = init_DK_seed_frames(10000) | |
FD_seed = init_FD_seed_frames(10000) | |
DK_secondary = init_DK_secondary_seed_frames(10000) | |
FD_secondary = init_FD_secondary_seed_frames(10000) | |
dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines() | |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) | |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) | |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='slate_var1') | |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1') | |
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000) | |
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1) | |
if site_var1 == 'Draftkings': | |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') | |
if player_var1 == 'Specific Players': | |
player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique()) | |
elif player_var1 == 'Full Slate': | |
player_var2 = dk_raw.Player.values.tolist() | |
raw_baselines = dk_raw | |
column_names = dk_columns | |
elif site_var1 == 'Fanduel': | |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') | |
if player_var1 == 'Specific Players': | |
player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique()) | |
elif player_var1 == 'Full Slate': | |
player_var2 = fd_raw.Player.values.tolist() | |
raw_baselines = fd_raw | |
column_names = fd_columns | |
if st.button("Prepare data export", key='data_export'): | |
if site_var1 == 'Draftkings': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
if slate_var1 == 'Main Slate': | |
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var) | |
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id)) | |
elif slate_var1 == 'Secondary Slate': | |
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var) | |
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id)) | |
raw_baselines = dk_raw | |
column_names = dk_columns | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
export_column_var = 8 | |
data_export = st.session_state.data_export_display.copy() | |
for col in range(export_column_var): | |
data_export[:, col] = np.array([dk_id_dict.get(x, x) for x in data_export[:, col]]) | |
elif site_var1 == 'Fanduel': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
if slate_var1 == 'Main Slate': | |
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var) | |
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id)) | |
elif slate_var1 == 'Secondary Slate': | |
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var) | |
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id)) | |
raw_baselines = fd_raw | |
column_names = fd_columns | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
export_column_var = 9 | |
data_export = st.session_state.data_export_display.copy() | |
for col in range(export_column_var): | |
data_export[:, col] = np.array([fd_id_dict.get(x, x) for x in fd_id_dict[:, col]]) | |
st.download_button( | |
label="Export optimals set", | |
data=convert_df(data_export), | |
file_name='NBA_optimals_export.csv', | |
mime='text/csv', | |
) | |
with col2: | |
if st.button("Load Data", key='load_data'): | |
if site_var1 == 'Draftkings': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
if slate_var1 == 'Main Slate': | |
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var) | |
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id)) | |
elif slate_var1 == 'Secondary Slate': | |
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var) | |
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id)) | |
raw_baselines = dk_raw | |
column_names = dk_columns | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif site_var1 == 'Fanduel': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
if slate_var1 == 'Main Slate': | |
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var) | |
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id)) | |
elif slate_var1 == 'Secondary Slate': | |
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var) | |
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id)) | |
raw_baselines = fd_raw | |
column_names = fd_columns | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
if 'data_export_display' in st.session_state: | |
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True) | |
with tab1: | |
col1, col2 = st.columns([1, 7]) | |
with col1: | |
if st.button("Load/Reset Data", key='reset2'): | |
st.cache_data.clear() | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
DK_seed = init_DK_seed_frames(10000) | |
FD_seed = init_FD_seed_frames(10000) | |
DK_secondary = init_DK_secondary_seed_frames(10000) | |
FD_secondary = init_FD_secondary_seed_frames(10000) | |
dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines() | |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) | |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) | |
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='sim_slate_var1') | |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1') | |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom')) | |
if contest_var1 == 'Small': | |
Contest_Size = 1000 | |
elif contest_var1 == 'Medium': | |
Contest_Size = 5000 | |
elif contest_var1 == 'Large': | |
Contest_Size = 10000 | |
elif contest_var1 == 'Custom': | |
Contest_Size = st.number_input("Insert contest size", value=100, min_value=100, max_value=100000, step=50) | |
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very')) | |
if strength_var1 == 'Not Very': | |
sharp_split = 500000 | |
elif strength_var1 == 'Below Average': | |
sharp_split = 400000 | |
elif strength_var1 == 'Average': | |
sharp_split = 300000 | |
elif strength_var1 == 'Above Average': | |
sharp_split = 200000 | |
elif strength_var1 == 'Very': | |
sharp_split = 100000 | |
with col2: | |
if st.button("Run Contest Sim"): | |
if 'working_seed' in st.session_state: | |
st.session_state.maps_dict = { | |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)), | |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)), | |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)), | |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])), | |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)), | |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)) | |
} | |
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size) | |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners)) | |
# Initial setup | |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy']) | |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2 | |
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str) | |
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts())) | |
# Type Casting | |
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32} | |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict) | |
# Sorting | |
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100) | |
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True) | |
# Data Copying | |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy() | |
# Data Copying | |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy() | |
else: | |
if sim_site_var1 == 'Draftkings': | |
if sim_slate_var1 == 'Main Slate': | |
st.session_state.working_seed = init_DK_seed_frames(sharp_split) | |
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id)) | |
raw_baselines = dk_raw | |
column_names = dk_columns | |
elif sim_slate_var1 == 'Secondary Slate': | |
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split) | |
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id)) | |
raw_baselines = dk_secondary | |
column_names = dk_columns | |
elif sim_site_var1 == 'Fanduel': | |
if sim_slate_var1 == 'Main Slate': | |
st.session_state.working_seed = init_FD_seed_frames(sharp_split) | |
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id)) | |
raw_baselines = fd_raw | |
column_names = fd_columns | |
elif sim_slate_var1 == 'Secondary Slate': | |
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split) | |
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id)) | |
raw_baselines = fd_secondary | |
column_names = fd_columns | |
st.session_state.maps_dict = { | |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)), | |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)), | |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)), | |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])), | |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)), | |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)) | |
} | |
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size) | |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners)) | |
# Initial setup | |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy']) | |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2 | |
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str) | |
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts())) | |
# Type Casting | |
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32} | |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict) | |
# Sorting | |
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100) | |
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True) | |
# Data Copying | |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy() | |
# Data Copying | |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy() | |
st.session_state.freq_copy = st.session_state.Sim_Winner_Display | |
if sim_site_var1 == 'Draftkings': | |
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:8].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
elif sim_site_var1 == 'Fanduel': | |
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
freq_working['Freq'] = freq_working['Freq'].astype(int) | |
freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map']) | |
freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map']) | |
freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 | |
freq_working['Exposure'] = freq_working['Freq']/(1000) | |
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own'] | |
freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map']) | |
st.session_state.player_freq = freq_working.copy() | |
if sim_site_var1 == 'Draftkings': | |
pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
elif sim_site_var1 == 'Fanduel': | |
pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
pg_working['Freq'] = pg_working['Freq'].astype(int) | |
pg_working['Position'] = pg_working['Player'].map(st.session_state.maps_dict['Pos_map']) | |
pg_working['Salary'] = pg_working['Player'].map(st.session_state.maps_dict['Salary_map']) | |
pg_working['Proj Own'] = pg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 | |
pg_working['Exposure'] = pg_working['Freq']/(1000) | |
pg_working['Edge'] = pg_working['Exposure'] - pg_working['Proj Own'] | |
pg_working['Team'] = pg_working['Player'].map(st.session_state.maps_dict['Team_map']) | |
st.session_state.pg_freq = pg_working.copy() | |
if sim_site_var1 == 'Draftkings': | |
sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:2].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
elif sim_site_var1 == 'Fanduel': | |
sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
sg_working['Freq'] = sg_working['Freq'].astype(int) | |
sg_working['Position'] = sg_working['Player'].map(st.session_state.maps_dict['Pos_map']) | |
sg_working['Salary'] = sg_working['Player'].map(st.session_state.maps_dict['Salary_map']) | |
sg_working['Proj Own'] = sg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 | |
sg_working['Exposure'] = sg_working['Freq']/(1000) | |
sg_working['Edge'] = sg_working['Exposure'] - sg_working['Proj Own'] | |
sg_working['Team'] = sg_working['Player'].map(st.session_state.maps_dict['Team_map']) | |
st.session_state.sg_freq = sg_working.copy() | |
if sim_site_var1 == 'Draftkings': | |
sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:3].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
elif sim_site_var1 == 'Fanduel': | |
sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
sf_working['Freq'] = sf_working['Freq'].astype(int) | |
sf_working['Position'] = sf_working['Player'].map(st.session_state.maps_dict['Pos_map']) | |
sf_working['Salary'] = sf_working['Player'].map(st.session_state.maps_dict['Salary_map']) | |
sf_working['Proj Own'] = sf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 | |
sf_working['Exposure'] = sf_working['Freq']/(1000) | |
sf_working['Edge'] = sf_working['Exposure'] - sf_working['Proj Own'] | |
sf_working['Team'] = sf_working['Player'].map(st.session_state.maps_dict['Team_map']) | |
st.session_state.sf_freq = sf_working.copy() | |
if sim_site_var1 == 'Draftkings': | |
pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,3:4].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
elif sim_site_var1 == 'Fanduel': | |
pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
pf_working['Freq'] = pf_working['Freq'].astype(int) | |
pf_working['Position'] = pf_working['Player'].map(st.session_state.maps_dict['Pos_map']) | |
pf_working['Salary'] = pf_working['Player'].map(st.session_state.maps_dict['Salary_map']) | |
pf_working['Proj Own'] = pf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 | |
pf_working['Exposure'] = pf_working['Freq']/(1000) | |
pf_working['Edge'] = pf_working['Exposure'] - pf_working['Proj Own'] | |
pf_working['Team'] = pf_working['Player'].map(st.session_state.maps_dict['Team_map']) | |
st.session_state.pf_freq = pf_working.copy() | |
if sim_site_var1 == 'Draftkings': | |
c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:5].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
elif sim_site_var1 == 'Fanduel': | |
c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
c_working['Freq'] = c_working['Freq'].astype(int) | |
c_working['Position'] = c_working['Player'].map(st.session_state.maps_dict['Pos_map']) | |
c_working['Salary'] = c_working['Player'].map(st.session_state.maps_dict['Salary_map']) | |
c_working['Proj Own'] = c_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 | |
c_working['Exposure'] = c_working['Freq']/(1000) | |
c_working['Edge'] = c_working['Exposure'] - c_working['Proj Own'] | |
c_working['Team'] = c_working['Player'].map(st.session_state.maps_dict['Team_map']) | |
st.session_state.c_freq = c_working.copy() | |
if sim_site_var1 == 'Draftkings': | |
g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,5:6].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
elif sim_site_var1 == 'Fanduel': | |
g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:4].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
g_working['Freq'] = g_working['Freq'].astype(int) | |
g_working['Position'] = g_working['Player'].map(st.session_state.maps_dict['Pos_map']) | |
g_working['Salary'] = g_working['Player'].map(st.session_state.maps_dict['Salary_map']) | |
g_working['Proj Own'] = g_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 | |
g_working['Exposure'] = g_working['Freq']/(1000) | |
g_working['Edge'] = g_working['Exposure'] - g_working['Proj Own'] | |
g_working['Team'] = g_working['Player'].map(st.session_state.maps_dict['Team_map']) | |
st.session_state.g_freq = g_working.copy() | |
if sim_site_var1 == 'Draftkings': | |
f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:7].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
elif sim_site_var1 == 'Fanduel': | |
f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:8].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
f_working['Freq'] = f_working['Freq'].astype(int) | |
f_working['Position'] = f_working['Player'].map(st.session_state.maps_dict['Pos_map']) | |
f_working['Salary'] = f_working['Player'].map(st.session_state.maps_dict['Salary_map']) | |
f_working['Proj Own'] = f_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 | |
f_working['Exposure'] = f_working['Freq']/(1000) | |
f_working['Edge'] = f_working['Exposure'] - f_working['Proj Own'] | |
f_working['Team'] = f_working['Player'].map(st.session_state.maps_dict['Team_map']) | |
st.session_state.f_freq = f_working.copy() | |
if sim_site_var1 == 'Draftkings': | |
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
elif sim_site_var1 == 'Fanduel': | |
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
flex_working['Freq'] = flex_working['Freq'].astype(int) | |
flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map']) | |
flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map']) | |
flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 | |
flex_working['Exposure'] = flex_working['Freq']/(1000) | |
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own'] | |
flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map']) | |
st.session_state.flex_freq = flex_working.copy() | |
if sim_site_var1 == 'Draftkings': | |
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,10:11].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
elif sim_site_var1 == 'Fanduel': | |
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)), | |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) | |
team_working['Freq'] = team_working['Freq'].astype(int) | |
team_working['Exposure'] = team_working['Freq']/(1000) | |
st.session_state.team_freq = team_working.copy() | |
with st.container(): | |
if st.button("Reset Sim", key='reset_sim'): | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
if 'player_freq' in st.session_state: | |
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2') | |
if player_split_var2 == 'Specific Players': | |
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique()) | |
elif player_split_var2 == 'Full Players': | |
find_var2 = st.session_state.player_freq.Player.values.tolist() | |
if player_split_var2 == 'Specific Players': | |
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)] | |
if player_split_var2 == 'Full Players': | |
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame | |
if 'Sim_Winner_Display' in st.session_state: | |
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
if 'Sim_Winner_Export' in st.session_state: | |
st.download_button( | |
label="Export Full Frame", | |
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'), | |
file_name='MLB_consim_export.csv', | |
mime='text/csv', | |
) | |
tab1, tab2 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics']) | |
with tab1: | |
if 'Sim_Winner_Display' in st.session_state: | |
# Create a new dataframe with summary statistics | |
summary_df = pd.DataFrame({ | |
'Metric': ['Min', 'Average', 'Max', 'STDdev'], | |
'Salary': [ | |
st.session_state.Sim_Winner_Display['salary'].min(), | |
st.session_state.Sim_Winner_Display['salary'].mean(), | |
st.session_state.Sim_Winner_Display['salary'].max(), | |
st.session_state.Sim_Winner_Display['salary'].std() | |
], | |
'Proj': [ | |
st.session_state.Sim_Winner_Display['proj'].min(), | |
st.session_state.Sim_Winner_Display['proj'].mean(), | |
st.session_state.Sim_Winner_Display['proj'].max(), | |
st.session_state.Sim_Winner_Display['proj'].std() | |
], | |
'Own': [ | |
st.session_state.Sim_Winner_Display['Own'].min(), | |
st.session_state.Sim_Winner_Display['Own'].mean(), | |
st.session_state.Sim_Winner_Display['Own'].max(), | |
st.session_state.Sim_Winner_Display['Own'].std() | |
], | |
'Fantasy': [ | |
st.session_state.Sim_Winner_Display['Fantasy'].min(), | |
st.session_state.Sim_Winner_Display['Fantasy'].mean(), | |
st.session_state.Sim_Winner_Display['Fantasy'].max(), | |
st.session_state.Sim_Winner_Display['Fantasy'].std() | |
], | |
'GPP_Proj': [ | |
st.session_state.Sim_Winner_Display['GPP_Proj'].min(), | |
st.session_state.Sim_Winner_Display['GPP_Proj'].mean(), | |
st.session_state.Sim_Winner_Display['GPP_Proj'].max(), | |
st.session_state.Sim_Winner_Display['GPP_Proj'].std() | |
] | |
}) | |
# Set the index of the summary dataframe as the "Metric" column | |
summary_df = summary_df.set_index('Metric') | |
# Display the summary dataframe | |
st.subheader("Winning Frame Statistics") | |
st.dataframe(summary_df.style.format({ | |
'Salary': '{:.2f}', | |
'Proj': '{:.2f}', | |
'Fantasy': '{:.2f}', | |
'GPP_Proj': '{:.2f}' | |
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True) | |
with tab2: | |
if 'Sim_Winner_Display' in st.session_state: | |
st.write("Yeah man that's crazy") | |
else: | |
st.write("Simulation data or position mapping not available.") | |
with st.container(): | |
tab1, tab2 = st.tabs(['Overall Exposures', 'Team Exposures']) | |
with tab1: | |
if 'player_freq' in st.session_state: | |
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Exposures", | |
data=st.session_state.player_freq.to_csv().encode('utf-8'), | |
file_name='player_freq_export.csv', | |
mime='text/csv', | |
key='overall' | |
) | |
with tab2: | |
if 'team_freq' in st.session_state: | |
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Exposures", | |
data=st.session_state.team_freq.to_csv().encode('utf-8'), | |
file_name='team_freq.csv', | |
mime='text/csv', | |
key='team' | |
) |