James McCool
Update player name reference in seed frame initialization functions
7bdc4c8
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["NBA_DFS"]
return db
db = init_conn()
percentages_format = {'Exposure': '{:.2%}'}
freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #FFD700;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #DAA520;
cursor: pointer;
}
</style>""", unsafe_allow_html=True)
@st.cache_data(ttl = 60)
def init_DK_seed_frames(load_size):
collection = db['DK_NBA_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
# Get the valid players from the Range of Outcomes collection
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find({"site": "Draftkings", "slate": "Main Slate"})
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
collection = db["DK_NBA_seed_frame"]
cursor = collection.find().limit(load_size)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
# Validate lineups against valid players
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
# Remove any remaining NaN values
raw_display = raw_display.dropna()
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 60)
def init_DK_secondary_seed_frames(load_size):
collection = db['DK_NBA_Secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
# Get the valid players from the Range of Outcomes collection
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find({"site": "Draftkings", "slate": "Secondary Slate"})
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
collection = db["DK_NBA_Secondary_seed_frame"]
cursor = collection.find().limit(load_size)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
# Validate lineups against valid players
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
# Remove any remaining NaN values
raw_display = raw_display.dropna()
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 60)
def init_FD_seed_frames(load_size):
collection = db['FD_NBA_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
# Get the valid players from the Range of Outcomes collection
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find({"site": "Fanduel", "slate": "Main Slate"})
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
collection = db["FD_NBA_seed_frame"]
cursor = collection.find().limit(load_size)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
# Validate lineups against valid players
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
# Remove any remaining NaN values
raw_display = raw_display.dropna()
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data(ttl = 60)
def init_FD_secondary_seed_frames(load_size):
collection = db['FD_NBA_Secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
# Get the valid players from the Range of Outcomes collection
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find({"site": "Fanduel", "slate": "Secondary Slate"})
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
collection = db["FD_NBA_Secondary_seed_frame"]
cursor = collection.find().limit(load_size)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
# Validate lineups against valid players
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
# Remove any remaining NaN values
raw_display = raw_display.dropna()
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_resource(ttl = 60)
def init_baselines():
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find()
load_display = pd.DataFrame(list(cursor))
load_display.replace('', np.nan, inplace=True)
load_display.rename(columns={"Fantasy": "Median", 'Name': 'Player', 'player_ID': 'player_id'}, inplace = True)
load_display = load_display[load_display['Median'] > 0]
dk_roo_raw = load_display[load_display['site'] == 'Draftkings']
dk_roo_raw = dk_roo_raw[dk_roo_raw['slate'] == 'Main Slate']
dk_roo_raw['STDev'] = dk_roo_raw['Median'] / 4
dk_raw = dk_roo_raw.dropna(subset=['Median'])
fd_roo_raw = load_display[load_display['site'] == 'Fanduel']
fd_roo_raw = fd_roo_raw[fd_roo_raw['slate'] == 'Main Slate']
fd_roo_raw['STDev'] = fd_roo_raw['Median'] / 4
fd_raw = fd_roo_raw.dropna(subset=['Median'])
dk_secondary_roo_raw = load_display[load_display['site'] == 'Draftkings']
dk_secondary_roo_raw = dk_secondary_roo_raw[dk_secondary_roo_raw['slate'] == 'Secondary Slate']
dk_secondary_roo_raw['STDev'] = dk_secondary_roo_raw['Median'] / 4
dk_secondary = dk_secondary_roo_raw.dropna(subset=['Median'])
fd_secondary_roo_raw = load_display[load_display['site'] == 'Fanduel']
fd_secondary_roo_raw = fd_secondary_roo_raw[fd_secondary_roo_raw['slate'] == 'Secondary Slate']
fd_secondary_roo_raw['STDev'] = fd_secondary_roo_raw['Median'] / 4
fd_secondary = fd_secondary_roo_raw.dropna(subset=['Median'])
return dk_raw, fd_raw, dk_secondary, fd_secondary
@st.cache_data
def validate_lineup_players(df, valid_players, player_columns):
"""
Validates that all players in specified columns exist in valid_players set
Args:
df: DataFrame containing lineups
valid_players: Set of valid player names
player_columns: List of columns containing player names
Returns:
DataFrame with only valid lineups
"""
valid_rows = df[player_columns].apply(lambda x: x.isin(valid_players)).all(axis=1)
return df[valid_rows]
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
@st.cache_data
def calculate_DK_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :8], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def calculate_FD_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :9], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size):
SimVar = 1
Sim_Winners = []
# Pre-vectorize functions
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
st.write('Simulating contest on frames')
while SimVar <= Sim_size:
fp_random = seed_frame[np.random.choice(seed_frame.shape[0], Contest_Size)]
sample_arrays1 = np.c_[
fp_random,
np.sum(np.random.normal(
loc=vec_projection_map(fp_random[:, :-7]),
scale=vec_stdev_map(fp_random[:, :-7])),
axis=1)
]
sample_arrays = sample_arrays1
if sim_site_var1 == 'Draftkings':
final_array = sample_arrays[sample_arrays[:, 9].argsort()[::-1]]
elif sim_site_var1 == 'Fanduel':
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
Sim_Winners.append(best_lineup)
SimVar += 1
return Sim_Winners
dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines()
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
with tab1:
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed = init_DK_seed_frames(10000)
FD_seed = init_FD_seed_frames(10000)
DK_secondary = init_DK_secondary_seed_frames(10000)
FD_secondary = init_FD_secondary_seed_frames(10000)
dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines()
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='sim_slate_var1')
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
if contest_var1 == 'Small':
Contest_Size = 1000
elif contest_var1 == 'Medium':
Contest_Size = 5000
elif contest_var1 == 'Large':
Contest_Size = 10000
elif contest_var1 == 'Custom':
Contest_Size = st.number_input("Insert contest size", value=100, min_value=100, max_value=100000, step=50)
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
if strength_var1 == 'Not Very':
sharp_split = 5000000
elif strength_var1 == 'Below Average':
sharp_split = 2500000
elif strength_var1 == 'Average':
sharp_split = 100000
elif strength_var1 == 'Above Average':
sharp_split = 50000
elif strength_var1 == 'Very':
sharp_split = 10000
if st.button("Run Contest Sim"):
if 'working_seed' in st.session_state:
st.session_state.maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
else:
if sim_site_var1 == 'Draftkings':
if sim_slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
raw_baselines = dk_raw
column_names = dk_columns
elif sim_slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split)
dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
raw_baselines = dk_secondary
column_names = dk_columns
elif sim_site_var1 == 'Fanduel':
if sim_slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
raw_baselines = fd_raw
column_names = fd_columns
elif sim_slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split)
fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
raw_baselines = fd_secondary
column_names = fd_columns
st.session_state.maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
st.session_state.freq_copy = st.session_state.Sim_Winner_Display
if sim_site_var1 == 'Draftkings':
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
freq_working['Freq'] = freq_working['Freq'].astype(int)
freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
freq_working['Exposure'] = freq_working['Freq']/(1000)
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.player_freq = freq_working.copy()
if sim_site_var1 == 'Draftkings':
pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
pg_working['Freq'] = pg_working['Freq'].astype(int)
pg_working['Position'] = pg_working['Player'].map(st.session_state.maps_dict['Pos_map'])
pg_working['Salary'] = pg_working['Player'].map(st.session_state.maps_dict['Salary_map'])
pg_working['Proj Own'] = pg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
pg_working['Exposure'] = pg_working['Freq']/(1000)
pg_working['Edge'] = pg_working['Exposure'] - pg_working['Proj Own']
pg_working['Team'] = pg_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.pg_freq = pg_working.copy()
if sim_site_var1 == 'Draftkings':
sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:2].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
sg_working['Freq'] = sg_working['Freq'].astype(int)
sg_working['Position'] = sg_working['Player'].map(st.session_state.maps_dict['Pos_map'])
sg_working['Salary'] = sg_working['Player'].map(st.session_state.maps_dict['Salary_map'])
sg_working['Proj Own'] = sg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
sg_working['Exposure'] = sg_working['Freq']/(1000)
sg_working['Edge'] = sg_working['Exposure'] - sg_working['Proj Own']
sg_working['Team'] = sg_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.sg_freq = sg_working.copy()
if sim_site_var1 == 'Draftkings':
sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:3].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
sf_working['Freq'] = sf_working['Freq'].astype(int)
sf_working['Position'] = sf_working['Player'].map(st.session_state.maps_dict['Pos_map'])
sf_working['Salary'] = sf_working['Player'].map(st.session_state.maps_dict['Salary_map'])
sf_working['Proj Own'] = sf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
sf_working['Exposure'] = sf_working['Freq']/(1000)
sf_working['Edge'] = sf_working['Exposure'] - sf_working['Proj Own']
sf_working['Team'] = sf_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.sf_freq = sf_working.copy()
if sim_site_var1 == 'Draftkings':
pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,3:4].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
pf_working['Freq'] = pf_working['Freq'].astype(int)
pf_working['Position'] = pf_working['Player'].map(st.session_state.maps_dict['Pos_map'])
pf_working['Salary'] = pf_working['Player'].map(st.session_state.maps_dict['Salary_map'])
pf_working['Proj Own'] = pf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
pf_working['Exposure'] = pf_working['Freq']/(1000)
pf_working['Edge'] = pf_working['Exposure'] - pf_working['Proj Own']
pf_working['Team'] = pf_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.pf_freq = pf_working.copy()
if sim_site_var1 == 'Draftkings':
c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:5].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
c_working['Freq'] = c_working['Freq'].astype(int)
c_working['Position'] = c_working['Player'].map(st.session_state.maps_dict['Pos_map'])
c_working['Salary'] = c_working['Player'].map(st.session_state.maps_dict['Salary_map'])
c_working['Proj Own'] = c_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
c_working['Exposure'] = c_working['Freq']/(1000)
c_working['Edge'] = c_working['Exposure'] - c_working['Proj Own']
c_working['Team'] = c_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.c_freq = c_working.copy()
if sim_site_var1 == 'Draftkings':
g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,5:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:4].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
g_working['Freq'] = g_working['Freq'].astype(int)
g_working['Position'] = g_working['Player'].map(st.session_state.maps_dict['Pos_map'])
g_working['Salary'] = g_working['Player'].map(st.session_state.maps_dict['Salary_map'])
g_working['Proj Own'] = g_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
g_working['Exposure'] = g_working['Freq']/(1000)
g_working['Edge'] = g_working['Exposure'] - g_working['Proj Own']
g_working['Team'] = g_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.g_freq = g_working.copy()
if sim_site_var1 == 'Draftkings':
f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:7].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
f_working['Freq'] = f_working['Freq'].astype(int)
f_working['Position'] = f_working['Player'].map(st.session_state.maps_dict['Pos_map'])
f_working['Salary'] = f_working['Player'].map(st.session_state.maps_dict['Salary_map'])
f_working['Proj Own'] = f_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
f_working['Exposure'] = f_working['Freq']/(1000)
f_working['Edge'] = f_working['Exposure'] - f_working['Proj Own']
f_working['Team'] = f_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.f_freq = f_working.copy()
if sim_site_var1 == 'Draftkings':
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
flex_working['Freq'] = flex_working['Freq'].astype(int)
flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map'])
flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map'])
flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
flex_working['Exposure'] = flex_working['Freq']/(1000)
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.flex_freq = flex_working.copy()
if sim_site_var1 == 'Draftkings':
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,10:11].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
team_working['Freq'] = team_working['Freq'].astype(int)
team_working['Exposure'] = team_working['Freq']/(1000)
st.session_state.team_freq = team_working.copy()
with st.container():
if st.button("Reset Sim", key='reset_sim'):
for key in st.session_state.keys():
del st.session_state[key]
if 'player_freq' in st.session_state:
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
if player_split_var2 == 'Specific Players':
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
elif player_split_var2 == 'Full Players':
find_var2 = st.session_state.player_freq.Player.values.tolist()
if player_split_var2 == 'Specific Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
if player_split_var2 == 'Full Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
if 'Sim_Winner_Display' in st.session_state:
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
if 'Sim_Winner_Export' in st.session_state:
st.download_button(
label="Export Full Frame",
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
file_name='MLB_consim_export.csv',
mime='text/csv',
)
tab1, tab2 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics'])
with tab1:
if 'Sim_Winner_Display' in st.session_state:
# Create a new dataframe with summary statistics
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
st.session_state.Sim_Winner_Display['salary'].min(),
st.session_state.Sim_Winner_Display['salary'].mean(),
st.session_state.Sim_Winner_Display['salary'].max(),
st.session_state.Sim_Winner_Display['salary'].std()
],
'Proj': [
st.session_state.Sim_Winner_Display['proj'].min(),
st.session_state.Sim_Winner_Display['proj'].mean(),
st.session_state.Sim_Winner_Display['proj'].max(),
st.session_state.Sim_Winner_Display['proj'].std()
],
'Own': [
st.session_state.Sim_Winner_Display['Own'].min(),
st.session_state.Sim_Winner_Display['Own'].mean(),
st.session_state.Sim_Winner_Display['Own'].max(),
st.session_state.Sim_Winner_Display['Own'].std()
],
'Fantasy': [
st.session_state.Sim_Winner_Display['Fantasy'].min(),
st.session_state.Sim_Winner_Display['Fantasy'].mean(),
st.session_state.Sim_Winner_Display['Fantasy'].max(),
st.session_state.Sim_Winner_Display['Fantasy'].std()
],
'GPP_Proj': [
st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
st.session_state.Sim_Winner_Display['GPP_Proj'].max(),
st.session_state.Sim_Winner_Display['GPP_Proj'].std()
]
})
# Set the index of the summary dataframe as the "Metric" column
summary_df = summary_df.set_index('Metric')
# Display the summary dataframe
st.subheader("Winning Frame Statistics")
st.dataframe(summary_df.style.format({
'Salary': '{:.2f}',
'Proj': '{:.2f}',
'Fantasy': '{:.2f}',
'GPP_Proj': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
with tab2:
if 'Sim_Winner_Display' in st.session_state:
st.write("Yeah man that's crazy")
else:
st.write("Simulation data or position mapping not available.")
with st.container():
tab1, tab2 = st.tabs(['Overall Exposures', 'Team Exposures'])
with tab1:
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.player_freq.to_csv().encode('utf-8'),
file_name='player_freq_export.csv',
mime='text/csv',
key='overall'
)
with tab2:
if 'team_freq' in st.session_state:
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.team_freq.to_csv().encode('utf-8'),
file_name='team_freq.csv',
mime='text/csv',
key='team'
)
with tab2:
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed = init_DK_seed_frames(10000)
FD_seed = init_FD_seed_frames(10000)
DK_secondary = init_DK_secondary_seed_frames(10000)
FD_secondary = init_FD_secondary_seed_frames(10000)
dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines()
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='slate_var1')
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1)
if site_var1 == 'Draftkings':
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = dk_raw.Player.values.tolist()
raw_baselines = dk_raw
column_names = dk_columns
elif site_var1 == 'Fanduel':
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = fd_raw.Player.values.tolist()
raw_baselines = fd_raw
column_names = fd_columns
if st.button("Prepare data export", key='data_export'):
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
export_column_var = 8
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
raw_baselines = dk_raw
column_names = dk_columns
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
raw_baselines = dk_secondary
column_names = dk_columns
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
export_column_var = 8
data_export = st.session_state.data_export_display.copy()
for col in range(export_column_var):
data_export[:, col] = np.array([dk_id_dict.get(x, x) for x in data_export[:, col]])
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
export_column_var = 9
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
raw_baselines = fd_raw
column_names = fd_columns
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
raw_baselines = fd_secondary
column_names = fd_columns
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
export_column_var = 9
data_export = st.session_state.data_export_display.copy()
for col in range(export_column_var):
data_export[:, col] = np.array([fd_id_dict.get(x, x) for x in fd_id_dict[:, col]])
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='NBA_optimals_export.csv',
mime='text/csv',
)
if st.button("Load Data", key='load_data'):
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
raw_baselines = dk_raw
column_names = dk_columns
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
raw_baselines = dk_secondary
column_names = dk_columns
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
raw_baselines = fd_raw
column_names = fd_columns
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
raw_baselines = fd_secondary
column_names = fd_columns
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)