James McCool commited on
Commit
2615945
·
1 Parent(s): 202a844

Enhance app.py: Introduce name mapping for player positions in DraftKings and FanDuel seed frame functions. Added functionality to convert player names using dedicated name maps for both main and secondary seed frames, improving data clarity and consistency in player representation.

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py CHANGED
@@ -23,48 +23,84 @@ fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'sal
23
 
24
  @st.cache_data(ttl = 60)
25
  def init_DK_seed_frames(load_size):
 
 
 
 
 
26
 
27
  collection = db["DK_NBA_seed_frame"]
28
  cursor = collection.find().limit(load_size)
29
 
30
  raw_display = pd.DataFrame(list(cursor))
31
  raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
 
 
 
 
32
  DK_seed = raw_display.to_numpy()
33
 
34
  return DK_seed
35
 
36
  @st.cache_data(ttl = 60)
37
  def init_DK_secondary_seed_frames(load_size):
 
 
 
 
 
38
 
39
  collection = db["DK_NBA_Secondary_seed_frame"]
40
  cursor = collection.find().limit(load_size)
41
 
42
  raw_display = pd.DataFrame(list(cursor))
43
  raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
 
 
 
 
44
  DK_seed = raw_display.to_numpy()
45
 
46
  return DK_seed
47
 
48
  @st.cache_data(ttl = 60)
49
  def init_FD_seed_frames(load_size):
 
 
 
 
 
50
 
51
  collection = db["FD_NBA_seed_frame"]
52
  cursor = collection.find().limit(load_size)
53
 
54
  raw_display = pd.DataFrame(list(cursor))
55
  raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
 
 
 
 
56
  FD_seed = raw_display.to_numpy()
57
 
58
  return FD_seed
59
 
60
  @st.cache_data(ttl = 60)
61
  def init_FD_secondary_seed_frames(load_size):
 
 
 
 
 
62
 
63
  collection = db["FD_NBA_Secondary_seed_frame"]
64
  cursor = collection.find().limit(load_size)
65
 
66
  raw_display = pd.DataFrame(list(cursor))
67
  raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
 
 
 
 
68
  FD_seed = raw_display.to_numpy()
69
 
70
  return FD_seed
 
23
 
24
  @st.cache_data(ttl = 60)
25
  def init_DK_seed_frames(load_size):
26
+
27
+ collection = db['DK_NBA_name_map']
28
+ cursor = collection.find()
29
+ raw_data = pd.DataFrame(list(cursor))
30
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
31
 
32
  collection = db["DK_NBA_seed_frame"]
33
  cursor = collection.find().limit(load_size)
34
 
35
  raw_display = pd.DataFrame(list(cursor))
36
  raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
37
+ dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
38
+ st.write("converting names")
39
+ for col in dict_columns:
40
+ raw_display[col] = raw_display[col].map(names_dict)
41
  DK_seed = raw_display.to_numpy()
42
 
43
  return DK_seed
44
 
45
  @st.cache_data(ttl = 60)
46
  def init_DK_secondary_seed_frames(load_size):
47
+
48
+ collection = db['DK_NBA_Secondary_name_map']
49
+ cursor = collection.find()
50
+ raw_data = pd.DataFrame(list(cursor))
51
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
52
 
53
  collection = db["DK_NBA_Secondary_seed_frame"]
54
  cursor = collection.find().limit(load_size)
55
 
56
  raw_display = pd.DataFrame(list(cursor))
57
  raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
58
+ dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
59
+ st.write("converting names")
60
+ for col in dict_columns:
61
+ raw_display[col] = raw_display[col].map(names_dict)
62
  DK_seed = raw_display.to_numpy()
63
 
64
  return DK_seed
65
 
66
  @st.cache_data(ttl = 60)
67
  def init_FD_seed_frames(load_size):
68
+
69
+ collection = db['FD_NBA_name_map']
70
+ cursor = collection.find()
71
+ raw_data = pd.DataFrame(list(cursor))
72
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
73
 
74
  collection = db["FD_NBA_seed_frame"]
75
  cursor = collection.find().limit(load_size)
76
 
77
  raw_display = pd.DataFrame(list(cursor))
78
  raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
79
+ dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
80
+ st.write("converting names")
81
+ for col in dict_columns:
82
+ raw_display[col] = raw_display[col].map(names_dict)
83
  FD_seed = raw_display.to_numpy()
84
 
85
  return FD_seed
86
 
87
  @st.cache_data(ttl = 60)
88
  def init_FD_secondary_seed_frames(load_size):
89
+
90
+ collection = db['FD_NBA_Secondary_name_map']
91
+ cursor = collection.find()
92
+ raw_data = pd.DataFrame(list(cursor))
93
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
94
 
95
  collection = db["FD_NBA_Secondary_seed_frame"]
96
  cursor = collection.find().limit(load_size)
97
 
98
  raw_display = pd.DataFrame(list(cursor))
99
  raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
100
+ dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
101
+ st.write("converting names")
102
+ for col in dict_columns:
103
+ raw_display[col] = raw_display[col].map(names_dict)
104
  FD_seed = raw_display.to_numpy()
105
 
106
  return FD_seed