Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1006 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
|
4 |
+
for name in dir():
|
5 |
+
if not name.startswith('_'):
|
6 |
+
del globals()[name]
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
import gspread
|
12 |
+
import random
|
13 |
+
import gc
|
14 |
+
|
15 |
+
@st.cache_resource
|
16 |
+
def init_conn():
|
17 |
+
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
18 |
+
"https://www.googleapis.com/auth/drive"]
|
19 |
+
|
20 |
+
credentials = {
|
21 |
+
"type": "service_account",
|
22 |
+
"project_id": "sheets-api-connect-378620",
|
23 |
+
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
|
24 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
25 |
+
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
26 |
+
"client_id": "106625872877651920064",
|
27 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
28 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
29 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
30 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
31 |
+
}
|
32 |
+
|
33 |
+
gc_con = gspread.service_account_from_dict(credentials)
|
34 |
+
|
35 |
+
return gc_con
|
36 |
+
|
37 |
+
gcservice_account = init_conn()
|
38 |
+
|
39 |
+
freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
|
40 |
+
|
41 |
+
@st.cache_resource(ttl = 300)
|
42 |
+
def load_dk_player_projections():
|
43 |
+
sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260')
|
44 |
+
worksheet = sh.worksheet('DK_Build_Up')
|
45 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
46 |
+
load_display.replace('', np.nan, inplace=True)
|
47 |
+
raw_display = load_display.dropna(subset=['Median'])
|
48 |
+
|
49 |
+
return raw_display
|
50 |
+
|
51 |
+
@st.cache_resource(ttl = 300)
|
52 |
+
def load_fd_player_projections():
|
53 |
+
sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260')
|
54 |
+
worksheet = sh.worksheet('FD_Build_Up')
|
55 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
56 |
+
load_display.replace('', np.nan, inplace=True)
|
57 |
+
raw_display = load_display.dropna(subset=['Median'])
|
58 |
+
|
59 |
+
return raw_display
|
60 |
+
|
61 |
+
@st.cache_resource(ttl = 300)
|
62 |
+
def set_export_ids():
|
63 |
+
sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260')
|
64 |
+
worksheet = sh.worksheet('DK_Salaries')
|
65 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
66 |
+
load_display.replace('', np.nan, inplace=True)
|
67 |
+
raw_display = load_display.dropna(subset=['Median'])
|
68 |
+
dk_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
|
69 |
+
|
70 |
+
worksheet = sh.worksheet('FD_Salaries')
|
71 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
72 |
+
load_display.replace('', np.nan, inplace=True)
|
73 |
+
raw_display = load_display.dropna(subset=['Median'])
|
74 |
+
fd_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
|
75 |
+
|
76 |
+
return dk_ids, fd_ids
|
77 |
+
|
78 |
+
dk_roo_raw = load_dk_player_projections()
|
79 |
+
fd_roo_raw = load_fd_player_projections()
|
80 |
+
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
81 |
+
dkid_dict, fdid_dict = set_export_ids()
|
82 |
+
|
83 |
+
static_exposure = pd.DataFrame(columns=['Player', 'count'])
|
84 |
+
overall_exposure = pd.DataFrame(columns=['Player', 'count'])
|
85 |
+
|
86 |
+
def sim_contest(Sim_size, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port):
|
87 |
+
SimVar = 1
|
88 |
+
Sim_Winners = []
|
89 |
+
fp_array = FinalPortfolio.values
|
90 |
+
|
91 |
+
if insert_port == 1:
|
92 |
+
up_array = CleanPortfolio.values
|
93 |
+
|
94 |
+
# Pre-vectorize functions
|
95 |
+
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
96 |
+
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
97 |
+
|
98 |
+
if insert_port == 1:
|
99 |
+
vec_up_projection_map = np.vectorize(up_dict['Projection_map'].__getitem__)
|
100 |
+
vec_up_stdev_map = np.vectorize(up_dict['STDev_map'].__getitem__)
|
101 |
+
|
102 |
+
st.write('Simulating contest on frames')
|
103 |
+
|
104 |
+
while SimVar <= Sim_size:
|
105 |
+
if insert_port == 1:
|
106 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size-len(CleanPortfolio))]
|
107 |
+
elif insert_port == 0:
|
108 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
|
109 |
+
|
110 |
+
sample_arrays1 = np.c_[
|
111 |
+
fp_random,
|
112 |
+
np.sum(np.random.normal(
|
113 |
+
loc=vec_projection_map(fp_random[:, :-5]),
|
114 |
+
scale=vec_stdev_map(fp_random[:, :-5])),
|
115 |
+
axis=1)
|
116 |
+
]
|
117 |
+
|
118 |
+
if insert_port == 1:
|
119 |
+
sample_arrays2 = np.c_[
|
120 |
+
up_array,
|
121 |
+
np.sum(np.random.normal(
|
122 |
+
loc=vec_up_projection_map(up_array[:, :-5]),
|
123 |
+
scale=vec_up_stdev_map(up_array[:, :-5])),
|
124 |
+
axis=1)
|
125 |
+
]
|
126 |
+
sample_arrays = np.vstack((sample_arrays1, sample_arrays2))
|
127 |
+
else:
|
128 |
+
sample_arrays = sample_arrays1
|
129 |
+
|
130 |
+
final_array = sample_arrays[sample_arrays[:, 9].argsort()[::-1]]
|
131 |
+
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
132 |
+
Sim_Winners.append(best_lineup)
|
133 |
+
SimVar += 1
|
134 |
+
|
135 |
+
return Sim_Winners
|
136 |
+
|
137 |
+
def run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs, field_growth):
|
138 |
+
RunsVar = 1
|
139 |
+
seed_depth_def = seed_depth1
|
140 |
+
Strength_var_def = Strength_var
|
141 |
+
strength_grow_def = strength_grow
|
142 |
+
Teams_used_def = Teams_used
|
143 |
+
Total_Runs_def = Total_Runs
|
144 |
+
|
145 |
+
st.write('Creating Seed Frames')
|
146 |
+
|
147 |
+
while RunsVar <= seed_depth_def:
|
148 |
+
if RunsVar <= 3:
|
149 |
+
FieldStrength = Strength_var_def
|
150 |
+
FinalPortfolio, maps_dict = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
151 |
+
FinalPortfolio2, maps_dict2 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
152 |
+
FinalPortfolio_init = pd.concat([FinalPortfolio, FinalPortfolio2], axis=0)
|
153 |
+
maps_dict.update(maps_dict2)
|
154 |
+
elif RunsVar > 3 and RunsVar <= 4:
|
155 |
+
FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001))
|
156 |
+
FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
157 |
+
FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
158 |
+
FinalPortfolio_merge_3 = pd.concat([FinalPortfolio_init, FinalPortfolio3], axis=0)
|
159 |
+
FinalPortfolio_merge_4 = pd.concat([FinalPortfolio_merge_3, FinalPortfolio4], axis=0)
|
160 |
+
FinalPortfolio_step_2 = FinalPortfolio_merge_4.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
|
161 |
+
maps_dict.update(maps_dict3)
|
162 |
+
maps_dict.update(maps_dict4)
|
163 |
+
elif RunsVar > 4:
|
164 |
+
FieldStrength = 1
|
165 |
+
FinalPortfolio5, maps_dict5 = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
166 |
+
FinalPortfolio6, maps_dict6 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
167 |
+
FinalPortfolio_merge_5 = pd.concat([FinalPortfolio_step_2, FinalPortfolio5], axis=0)
|
168 |
+
FinalPortfolio_merge_6 = pd.concat([FinalPortfolio_merge_5, FinalPortfolio6], axis=0)
|
169 |
+
FinalPortfolio_export = FinalPortfolio_merge_6.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
|
170 |
+
maps_dict.update(maps_dict5)
|
171 |
+
maps_dict.update(maps_dict6)
|
172 |
+
RunsVar += 1
|
173 |
+
|
174 |
+
return FinalPortfolio_export, maps_dict
|
175 |
+
|
176 |
+
def create_overall_dfs(pos_players, table_name, dict_name, pos):
|
177 |
+
if pos == "UTIL":
|
178 |
+
pos_players = pos_players.sort_values(by='Value', ascending=False)
|
179 |
+
table_name_raw = pos_players.reset_index(drop=True)
|
180 |
+
overall_table_name = table_name_raw.head(round(len(table_name_raw)))
|
181 |
+
overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
|
182 |
+
overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
|
183 |
+
elif pos != "UTIL":
|
184 |
+
table_name_raw = pos_players[pos_players['Position'].str.contains(pos)].reset_index(drop=True)
|
185 |
+
overall_table_name = table_name_raw.head(round(len(table_name_raw)))
|
186 |
+
overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
|
187 |
+
overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
|
188 |
+
|
189 |
+
return overall_table_name, overall_dict_name
|
190 |
+
|
191 |
+
|
192 |
+
def get_overall_merged_df():
|
193 |
+
ref_dict = {
|
194 |
+
'pos':['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'],
|
195 |
+
'pos_dfs':['PG_Table', 'SG_Table', 'SF_Table', 'PF_Table', 'C_Table', 'G_Table', 'F_Table', 'UTIL_Table'],
|
196 |
+
'pos_dicts':['pg_dict', 'sg_dict', 'sf_dict', 'pf_dict', 'c_dict', 'g_dict', 'f_dict', 'util_dict']
|
197 |
+
}
|
198 |
+
|
199 |
+
for i in range(0,8):
|
200 |
+
ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i] =\
|
201 |
+
create_overall_dfs(pos_players, ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i], ref_dict['pos'][i])
|
202 |
+
|
203 |
+
df_out = pd.concat(ref_dict['pos_dfs'], ignore_index=True)
|
204 |
+
|
205 |
+
return ref_dict
|
206 |
+
|
207 |
+
def calculate_range_var(count, min_val, FieldStrength, field_growth):
|
208 |
+
var = round(len(count[0]) * FieldStrength)
|
209 |
+
var = max(var, min_val)
|
210 |
+
var += round(field_growth)
|
211 |
+
|
212 |
+
return min(var, len(count[0]))
|
213 |
+
|
214 |
+
def create_random_portfolio(Total_Sample_Size, raw_baselines, field_growth):
|
215 |
+
|
216 |
+
full_pos_player_dict = get_overall_merged_df()
|
217 |
+
|
218 |
+
field_growth_rounded = round(field_growth)
|
219 |
+
ranges_dict = {}
|
220 |
+
|
221 |
+
# Calculate ranges
|
222 |
+
for df, dict_val, min_val, key in zip(ref_dict['pos_dfs'], ref_dict['pos_dicts'],
|
223 |
+
[20, 15, 15, 20, 20, 30, 30, 50], ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']):
|
224 |
+
count = create_overall_dfs(pos_players, df, dict_val, key)
|
225 |
+
ranges_dict[f"{key.lower()}_range"] = calculate_range_var(count, min_val, FieldStrength, field_growth_rounded)
|
226 |
+
|
227 |
+
# Generate random portfolios
|
228 |
+
rng = np.random.default_rng()
|
229 |
+
total_elements = [1, 1, 1, 1, 1, 1, 1, 1]
|
230 |
+
keys = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
|
231 |
+
|
232 |
+
all_choices = [rng.choice(ranges_dict[f"{key}_range"], size=(Total_Sample_Size, elem)) for key, elem in zip(keys, total_elements)]
|
233 |
+
RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'])
|
234 |
+
RandomPortfolio['User/Field'] = 0
|
235 |
+
|
236 |
+
return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict
|
237 |
+
|
238 |
+
def get_correlated_portfolio_for_sim(Total_Sample_Size, sharp_split, field_growth):
|
239 |
+
|
240 |
+
sizesplit = round(Total_Sample_Size * sharp_split)
|
241 |
+
|
242 |
+
RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines, field_growth)
|
243 |
+
|
244 |
+
RandomPortfolio['PG'] = pd.Series(list(RandomPortfolio['PG'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
245 |
+
RandomPortfolio['SG'] = pd.Series(list(RandomPortfolio['SG'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
246 |
+
RandomPortfolio['SF'] = pd.Series(list(RandomPortfolio['SF'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
|
247 |
+
RandomPortfolio['PF'] = pd.Series(list(RandomPortfolio['PF'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
|
248 |
+
RandomPortfolio['C'] = pd.Series(list(RandomPortfolio['C'].map(full_pos_player_dict['pos_dicts'][4])), dtype="string[pyarrow]")
|
249 |
+
RandomPortfolio['G'] = pd.Series(list(RandomPortfolio['G'].map(full_pos_player_dict['pos_dicts'][5])), dtype="string[pyarrow]")
|
250 |
+
RandomPortfolio['F'] = pd.Series(list(RandomPortfolio['F'].map(full_pos_player_dict['pos_dicts'][6])), dtype="string[pyarrow]")
|
251 |
+
RandomPortfolio['UTIL'] = pd.Series(list(RandomPortfolio['UTIL'].map(full_pos_player_dict['pos_dicts'][7])), dtype="string[pyarrow]")
|
252 |
+
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
253 |
+
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
254 |
+
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 9].drop(columns=['plyr_list','plyr_count']).\
|
255 |
+
reset_index(drop=True)
|
256 |
+
|
257 |
+
RandomPortfolio['PGs'] = RandomPortfolio['PG'].map(maps_dict['Salary_map']).astype(np.int32)
|
258 |
+
RandomPortfolio['SGs'] = RandomPortfolio['SG'].map(maps_dict['Salary_map']).astype(np.int32)
|
259 |
+
RandomPortfolio['SFs'] = RandomPortfolio['SF'].map(maps_dict['Salary_map']).astype(np.int32)
|
260 |
+
RandomPortfolio['PFs'] = RandomPortfolio['PF'].map(maps_dict['Salary_map']).astype(np.int32)
|
261 |
+
RandomPortfolio['Cs'] = RandomPortfolio['C'].map(maps_dict['Salary_map']).astype(np.int32)
|
262 |
+
RandomPortfolio['Gs'] = RandomPortfolio['G'].map(maps_dict['Salary_map']).astype(np.int32)
|
263 |
+
RandomPortfolio['Fs'] = RandomPortfolio['F'].map(maps_dict['Salary_map']).astype(np.int32)
|
264 |
+
RandomPortfolio['UTILs'] = RandomPortfolio['UTIL'].map(maps_dict['Salary_map']).astype(np.int32)
|
265 |
+
|
266 |
+
RandomPortfolio['PGp'] = RandomPortfolio['PG'].map(maps_dict['Projection_map']).astype(np.float16)
|
267 |
+
RandomPortfolio['SGp'] = RandomPortfolio['SG'].map(maps_dict['Projection_map']).astype(np.float16)
|
268 |
+
RandomPortfolio['SFp'] = RandomPortfolio['SF'].map(maps_dict['Projection_map']).astype(np.float16)
|
269 |
+
RandomPortfolio['PFp'] = RandomPortfolio['PF'].map(maps_dict['Projection_map']).astype(np.float16)
|
270 |
+
RandomPortfolio['Cp'] = RandomPortfolio['C'].map(maps_dict['Projection_map']).astype(np.float16)
|
271 |
+
RandomPortfolio['Gp'] = RandomPortfolio['G'].map(maps_dict['Projection_map']).astype(np.float16)
|
272 |
+
RandomPortfolio['Fp'] = RandomPortfolio['F'].map(maps_dict['Projection_map']).astype(np.float16)
|
273 |
+
RandomPortfolio['UTILp'] = RandomPortfolio['UTIL'].map(maps_dict['Projection_map']).astype(np.float16)
|
274 |
+
RandomPortfolio['DSTp'] = RandomPortfolio['DST'].map(maps_dict['Projection_map']).astype(np.float16)
|
275 |
+
|
276 |
+
RandomPortfolio['PGo'] = RandomPortfolio['PG'].map(maps_dict['Own_map']).astype(np.float16)
|
277 |
+
RandomPortfolio['SGo'] = RandomPortfolio['SG'].map(maps_dict['Own_map']).astype(np.float16)
|
278 |
+
RandomPortfolio['SFo'] = RandomPortfolio['SF'].map(maps_dict['Own_map']).astype(np.float16)
|
279 |
+
RandomPortfolio['PFo'] = RandomPortfolio['PF'].map(maps_dict['Own_map']).astype(np.float16)
|
280 |
+
RandomPortfolio['Co'] = RandomPortfolio['C'].map(maps_dict['Own_map']).astype(np.float16)
|
281 |
+
RandomPortfolio['Go'] = RandomPortfolio['G'].map(maps_dict['Own_map']).astype(np.float16)
|
282 |
+
RandomPortfolio['Fo'] = RandomPortfolio['F'].map(maps_dict['Own_map']).astype(np.float16)
|
283 |
+
RandomPortfolio['UTILo'] = RandomPortfolio['UTIL'].map(maps_dict['Own_map']).astype(np.float16)
|
284 |
+
RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
|
285 |
+
|
286 |
+
RandomPortArray = RandomPortfolio.to_numpy()
|
287 |
+
|
288 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,9:17].astype(int))]
|
289 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,17:25].astype(np.double))]
|
290 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,25:33].astype(np.double))]
|
291 |
+
|
292 |
+
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[9:33], axis=1)
|
293 |
+
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'User/Field', 'Salary', 'Projection', 'Own'])
|
294 |
+
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
295 |
+
|
296 |
+
if insert_port == 1:
|
297 |
+
CleanPortfolio['Salary'] = sum([CleanPortfolio['PG'].map(maps_dict['Salary_map']),
|
298 |
+
CleanPortfolio['SG'].map(maps_dict['Salary_map']),
|
299 |
+
CleanPortfolio['SF'].map(maps_dict['Salary_map']),
|
300 |
+
CleanPortfolio['PF'].map(maps_dict['Salary_map']),
|
301 |
+
CleanPortfolio['C'].map(maps_dict['Salary_map']),
|
302 |
+
CleanPortfolio['G'].map(maps_dict['Salary_map']),
|
303 |
+
CleanPortfolio['F'].map(maps_dict['Salary_map']),
|
304 |
+
CleanPortfolio['UTIL'].map(maps_dict['Salary_map'])
|
305 |
+
]).astype(np.int16)
|
306 |
+
if insert_port == 1:
|
307 |
+
CleanPortfolio['Projection'] = sum([CleanPortfolio['PG'].map(maps_dict['Projection_map']),
|
308 |
+
CleanPortfolio['SG'].map(maps_dict['Projection_map']),
|
309 |
+
CleanPortfolio['SF'].map(maps_dict['Projection_map']),
|
310 |
+
CleanPortfolio['PF'].map(maps_dict['Projection_map']),
|
311 |
+
CleanPortfolio['C'].map(maps_dict['Projection_map']),
|
312 |
+
CleanPortfolio['G'].map(maps_dict['Projection_map']),
|
313 |
+
CleanPortfolio['F'].map(maps_dict['Projection_map']),
|
314 |
+
CleanPortfolio['UTIL'].map(maps_dict['Projection_map'])
|
315 |
+
]).astype(np.float16)
|
316 |
+
if insert_port == 1:
|
317 |
+
CleanPortfolio['Own'] = sum([CleanPortfolio['PG'].map(maps_dict['Own_map']),
|
318 |
+
CleanPortfolio['SG'].map(maps_dict['Own_map']),
|
319 |
+
CleanPortfolio['SF'].map(maps_dict['Own_map']),
|
320 |
+
CleanPortfolio['PF'].map(maps_dict['Own_map']),
|
321 |
+
CleanPortfolio['C'].map(maps_dict['Own_map']),
|
322 |
+
CleanPortfolio['G'].map(maps_dict['Own_map']),
|
323 |
+
CleanPortfolio['F'].map(maps_dict['Own_map']),
|
324 |
+
CleanPortfolio['UTIL'].map(maps_dict['Own_map'])
|
325 |
+
]).astype(np.float16)
|
326 |
+
|
327 |
+
if site_var1 == 'Draftkings':
|
328 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
|
329 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (49500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
330 |
+
elif site_var1 == 'Fanduel':
|
331 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True)
|
332 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (59500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
333 |
+
|
334 |
+
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
335 |
+
|
336 |
+
RandomPortfolio = RandomPortfolio[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'User/Field', 'Salary', 'Projection', 'Own']]
|
337 |
+
|
338 |
+
return RandomPortfolio, maps_dict
|
339 |
+
|
340 |
+
def get_uncorrelated_portfolio_for_sim(Total_Sample_Size, sharp_split, field_growth):
|
341 |
+
|
342 |
+
sizesplit = round(Total_Sample_Size * sharp_split)
|
343 |
+
|
344 |
+
RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines, field_growth)
|
345 |
+
|
346 |
+
RandomPortfolio['PG'] = pd.Series(list(RandomPortfolio['PG'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
347 |
+
RandomPortfolio['SG'] = pd.Series(list(RandomPortfolio['SG'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
348 |
+
RandomPortfolio['SF'] = pd.Series(list(RandomPortfolio['SF'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
|
349 |
+
RandomPortfolio['PF'] = pd.Series(list(RandomPortfolio['PF'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
|
350 |
+
RandomPortfolio['C'] = pd.Series(list(RandomPortfolio['C'].map(full_pos_player_dict['pos_dicts'][4])), dtype="string[pyarrow]")
|
351 |
+
RandomPortfolio['G'] = pd.Series(list(RandomPortfolio['G'].map(full_pos_player_dict['pos_dicts'][5])), dtype="string[pyarrow]")
|
352 |
+
RandomPortfolio['F'] = pd.Series(list(RandomPortfolio['F'].map(full_pos_player_dict['pos_dicts'][6])), dtype="string[pyarrow]")
|
353 |
+
RandomPortfolio['UTIL'] = pd.Series(list(RandomPortfolio['UTIL'].map(full_pos_player_dict['pos_dicts'][7])), dtype="string[pyarrow]")
|
354 |
+
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
355 |
+
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
356 |
+
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 9].drop(columns=['plyr_list','plyr_count']).\
|
357 |
+
reset_index(drop=True)
|
358 |
+
|
359 |
+
RandomPortfolio['PGs'] = RandomPortfolio['PG'].map(maps_dict['Salary_map']).astype(np.int32)
|
360 |
+
RandomPortfolio['SGs'] = RandomPortfolio['SG'].map(maps_dict['Salary_map']).astype(np.int32)
|
361 |
+
RandomPortfolio['SFs'] = RandomPortfolio['SF'].map(maps_dict['Salary_map']).astype(np.int32)
|
362 |
+
RandomPortfolio['PFs'] = RandomPortfolio['PF'].map(maps_dict['Salary_map']).astype(np.int32)
|
363 |
+
RandomPortfolio['Cs'] = RandomPortfolio['C'].map(maps_dict['Salary_map']).astype(np.int32)
|
364 |
+
RandomPortfolio['Gs'] = RandomPortfolio['G'].map(maps_dict['Salary_map']).astype(np.int32)
|
365 |
+
RandomPortfolio['Fs'] = RandomPortfolio['F'].map(maps_dict['Salary_map']).astype(np.int32)
|
366 |
+
RandomPortfolio['UTILs'] = RandomPortfolio['UTIL'].map(maps_dict['Salary_map']).astype(np.int32)
|
367 |
+
|
368 |
+
RandomPortfolio['PGp'] = RandomPortfolio['PG'].map(maps_dict['Projection_map']).astype(np.float16)
|
369 |
+
RandomPortfolio['SGp'] = RandomPortfolio['SG'].map(maps_dict['Projection_map']).astype(np.float16)
|
370 |
+
RandomPortfolio['SFp'] = RandomPortfolio['SF'].map(maps_dict['Projection_map']).astype(np.float16)
|
371 |
+
RandomPortfolio['PFp'] = RandomPortfolio['PF'].map(maps_dict['Projection_map']).astype(np.float16)
|
372 |
+
RandomPortfolio['Cp'] = RandomPortfolio['C'].map(maps_dict['Projection_map']).astype(np.float16)
|
373 |
+
RandomPortfolio['Gp'] = RandomPortfolio['G'].map(maps_dict['Projection_map']).astype(np.float16)
|
374 |
+
RandomPortfolio['Fp'] = RandomPortfolio['F'].map(maps_dict['Projection_map']).astype(np.float16)
|
375 |
+
RandomPortfolio['UTILp'] = RandomPortfolio['UTIL'].map(maps_dict['Projection_map']).astype(np.float16)
|
376 |
+
RandomPortfolio['DSTp'] = RandomPortfolio['DST'].map(maps_dict['Projection_map']).astype(np.float16)
|
377 |
+
|
378 |
+
RandomPortfolio['PGo'] = RandomPortfolio['PG'].map(maps_dict['Own_map']).astype(np.float16)
|
379 |
+
RandomPortfolio['SGo'] = RandomPortfolio['SG'].map(maps_dict['Own_map']).astype(np.float16)
|
380 |
+
RandomPortfolio['SFo'] = RandomPortfolio['SF'].map(maps_dict['Own_map']).astype(np.float16)
|
381 |
+
RandomPortfolio['PFo'] = RandomPortfolio['PF'].map(maps_dict['Own_map']).astype(np.float16)
|
382 |
+
RandomPortfolio['Co'] = RandomPortfolio['C'].map(maps_dict['Own_map']).astype(np.float16)
|
383 |
+
RandomPortfolio['Go'] = RandomPortfolio['G'].map(maps_dict['Own_map']).astype(np.float16)
|
384 |
+
RandomPortfolio['Fo'] = RandomPortfolio['F'].map(maps_dict['Own_map']).astype(np.float16)
|
385 |
+
RandomPortfolio['UTILo'] = RandomPortfolio['UTIL'].map(maps_dict['Own_map']).astype(np.float16)
|
386 |
+
RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
|
387 |
+
|
388 |
+
RandomPortArray = RandomPortfolio.to_numpy()
|
389 |
+
|
390 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,9:17].astype(int))]
|
391 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,17:25].astype(np.double))]
|
392 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,25:33].astype(np.double))]
|
393 |
+
|
394 |
+
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[9:33], axis=1)
|
395 |
+
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'User/Field', 'Salary', 'Projection', 'Own'])
|
396 |
+
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
397 |
+
|
398 |
+
if insert_port == 1:
|
399 |
+
CleanPortfolio['Salary'] = sum([CleanPortfolio['PG'].map(maps_dict['Salary_map']),
|
400 |
+
CleanPortfolio['SG'].map(maps_dict['Salary_map']),
|
401 |
+
CleanPortfolio['SF'].map(maps_dict['Salary_map']),
|
402 |
+
CleanPortfolio['PF'].map(maps_dict['Salary_map']),
|
403 |
+
CleanPortfolio['C'].map(maps_dict['Salary_map']),
|
404 |
+
CleanPortfolio['G'].map(maps_dict['Salary_map']),
|
405 |
+
CleanPortfolio['F'].map(maps_dict['Salary_map']),
|
406 |
+
CleanPortfolio['UTIL'].map(maps_dict['Salary_map'])
|
407 |
+
]).astype(np.int16)
|
408 |
+
if insert_port == 1:
|
409 |
+
CleanPortfolio['Projection'] = sum([CleanPortfolio['PG'].map(maps_dict['Projection_map']),
|
410 |
+
CleanPortfolio['SG'].map(maps_dict['Projection_map']),
|
411 |
+
CleanPortfolio['SF'].map(maps_dict['Projection_map']),
|
412 |
+
CleanPortfolio['PF'].map(maps_dict['Projection_map']),
|
413 |
+
CleanPortfolio['C'].map(maps_dict['Projection_map']),
|
414 |
+
CleanPortfolio['G'].map(maps_dict['Projection_map']),
|
415 |
+
CleanPortfolio['F'].map(maps_dict['Projection_map']),
|
416 |
+
CleanPortfolio['UTIL'].map(maps_dict['Projection_map'])
|
417 |
+
]).astype(np.float16)
|
418 |
+
if insert_port == 1:
|
419 |
+
CleanPortfolio['Own'] = sum([CleanPortfolio['PG'].map(maps_dict['Own_map']),
|
420 |
+
CleanPortfolio['SG'].map(maps_dict['Own_map']),
|
421 |
+
CleanPortfolio['SF'].map(maps_dict['Own_map']),
|
422 |
+
CleanPortfolio['PF'].map(maps_dict['Own_map']),
|
423 |
+
CleanPortfolio['C'].map(maps_dict['Own_map']),
|
424 |
+
CleanPortfolio['G'].map(maps_dict['Own_map']),
|
425 |
+
CleanPortfolio['F'].map(maps_dict['Own_map']),
|
426 |
+
CleanPortfolio['UTIL'].map(maps_dict['Own_map'])
|
427 |
+
]).astype(np.float16)
|
428 |
+
|
429 |
+
if site_var1 == 'Draftkings':
|
430 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
|
431 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (49500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
432 |
+
elif site_var1 == 'Fanduel':
|
433 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True)
|
434 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (59500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
435 |
+
|
436 |
+
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
437 |
+
|
438 |
+
RandomPortfolio = RandomPortfolio[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'User/Field', 'Salary', 'Projection', 'Own']]
|
439 |
+
|
440 |
+
return RandomPortfolio, maps_dict
|
441 |
+
|
442 |
+
tab1, tab2 = st.tabs(['Uploads', 'Contest Sim'])
|
443 |
+
|
444 |
+
with tab1:
|
445 |
+
with st.container():
|
446 |
+
col1, col2 = st.columns([3, 3])
|
447 |
+
|
448 |
+
with col1:
|
449 |
+
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'. Upload your projections first to avoid an error message.")
|
450 |
+
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
|
451 |
+
|
452 |
+
if proj_file is not None:
|
453 |
+
try:
|
454 |
+
proj_dataframe = pd.read_csv(proj_file)
|
455 |
+
proj_dataframe = proj_dataframe.dropna(subset='Median')
|
456 |
+
proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
|
457 |
+
try:
|
458 |
+
proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
|
459 |
+
except:
|
460 |
+
pass
|
461 |
+
|
462 |
+
except:
|
463 |
+
proj_dataframe = pd.read_excel(proj_file)
|
464 |
+
proj_dataframe = proj_dataframe.dropna(subset='Median')
|
465 |
+
proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
|
466 |
+
try:
|
467 |
+
proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
|
468 |
+
except:
|
469 |
+
pass
|
470 |
+
st.table(proj_dataframe.head(10))
|
471 |
+
player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
|
472 |
+
player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
|
473 |
+
player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
|
474 |
+
|
475 |
+
with col2:
|
476 |
+
st.info("The Portfolio file must contain only columns in order and explicitly named: 'PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', and 'UTIL'. Upload your projections first to avoid an error message.")
|
477 |
+
portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')
|
478 |
+
|
479 |
+
if portfolio_file is not None:
|
480 |
+
try:
|
481 |
+
portfolio_dataframe = pd.read_csv(portfolio_file)
|
482 |
+
|
483 |
+
except:
|
484 |
+
portfolio_dataframe = pd.read_excel(portfolio_file)
|
485 |
+
|
486 |
+
try:
|
487 |
+
try:
|
488 |
+
portfolio_dataframe.columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
|
489 |
+
split_portfolio = portfolio_dataframe
|
490 |
+
split_portfolio[['PG', 'PG_ID']] = split_portfolio.PG.str.split("(", n=1, expand = True)
|
491 |
+
split_portfolio[['SG', 'SG_ID']] = split_portfolio.SG.str.split("(", n=1, expand = True)
|
492 |
+
split_portfolio[['SF', 'SF_ID']] = split_portfolio.SF.str.split("(", n=1, expand = True)
|
493 |
+
split_portfolio[['PF', 'PF_ID']] = split_portfolio.PF.str.split("(", n=1, expand = True)
|
494 |
+
split_portfolio[['C', 'C_ID']] = split_portfolio.C.str.split("(", n=1, expand = True)
|
495 |
+
split_portfolio[['G', 'G_ID']] = split_portfolio.G.str.split("(", n=1, expand = True)
|
496 |
+
split_portfolio[['F', 'F_ID']] = split_portfolio.F.str.split("(", n=1, expand = True)
|
497 |
+
split_portfolio[['UTIL', 'UTIL_ID']] = split_portfolio.UTIL.str.split("(", n=1, expand = True)
|
498 |
+
|
499 |
+
split_portfolio['PG'] = split_portfolio['PG'].str.strip()
|
500 |
+
split_portfolio['SG'] = split_portfolio['SG'].str.strip()
|
501 |
+
split_portfolio['SF'] = split_portfolio['SF'].str.strip()
|
502 |
+
split_portfolio['PF'] = split_portfolio['PF'].str.strip()
|
503 |
+
split_portfolio['C'] = split_portfolio['C'].str.strip()
|
504 |
+
split_portfolio['G'] = split_portfolio['G'].str.strip()
|
505 |
+
split_portfolio['F'] = split_portfolio['F'].str.strip()
|
506 |
+
split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
|
507 |
+
|
508 |
+
split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
|
509 |
+
split_portfolio['SG'].map(player_salary_dict),
|
510 |
+
split_portfolio['SF'].map(player_salary_dict),
|
511 |
+
split_portfolio['PF'].map(player_salary_dict),
|
512 |
+
split_portfolio['C'].map(player_salary_dict),
|
513 |
+
split_portfolio['G'].map(player_salary_dict),
|
514 |
+
split_portfolio['F'].map(player_salary_dict),
|
515 |
+
split_portfolio['UTIL'].map(player_salary_dict)])
|
516 |
+
|
517 |
+
split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
|
518 |
+
split_portfolio['SG'].map(player_proj_dict),
|
519 |
+
split_portfolio['SF'].map(player_proj_dict),
|
520 |
+
split_portfolio['PF'].map(player_proj_dict),
|
521 |
+
split_portfolio['C'].map(player_proj_dict),
|
522 |
+
split_portfolio['G'].map(player_proj_dict),
|
523 |
+
split_portfolio['F'].map(player_proj_dict),
|
524 |
+
split_portfolio['UTIL'].map(player_proj_dict)])
|
525 |
+
|
526 |
+
split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
|
527 |
+
split_portfolio['SG'].map(player_own_dict),
|
528 |
+
split_portfolio['SF'].map(player_own_dict),
|
529 |
+
split_portfolio['PF'].map(player_own_dict),
|
530 |
+
split_portfolio['C'].map(player_own_dict),
|
531 |
+
split_portfolio['G'].map(player_own_dict),
|
532 |
+
split_portfolio['F'].map(player_own_dict),
|
533 |
+
split_portfolio['UTIL'].map(player_own_dict)])
|
534 |
+
|
535 |
+
st.table(split_portfolio.head(10))
|
536 |
+
|
537 |
+
|
538 |
+
except:
|
539 |
+
portfolio_dataframe.columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
|
540 |
+
|
541 |
+
split_portfolio = portfolio_dataframe
|
542 |
+
split_portfolio[['PG_ID', 'PG']] = split_portfolio.PG.str.split(":", n=1, expand = True)
|
543 |
+
split_portfolio[['SG_ID', 'SG']] = split_portfolio.SG.str.split(":", n=1, expand = True)
|
544 |
+
split_portfolio[['SF_ID', 'SF']] = split_portfolio.SF.str.split(":", n=1, expand = True)
|
545 |
+
split_portfolio[['PF_ID', 'PF']] = split_portfolio.PF.str.split(":", n=1, expand = True)
|
546 |
+
split_portfolio[['C_ID', 'C']] = split_portfolio.C.str.split(":", n=1, expand = True)
|
547 |
+
split_portfolio[['G_ID', 'G']] = split_portfolio.G.str.split(":", n=1, expand = True)
|
548 |
+
split_portfolio[['F_ID', 'F']] = split_portfolio.F.str.split(":", n=1, expand = True)
|
549 |
+
split_portfolio[['UTIL_ID', 'UTIL']] = split_portfolio.UTIL.str.split(":", n=1, expand = True)
|
550 |
+
|
551 |
+
split_portfolio['PG'] = split_portfolio['PG'].str.strip()
|
552 |
+
split_portfolio['SG'] = split_portfolio['SG'].str.strip()
|
553 |
+
split_portfolio['SF'] = split_portfolio['SF'].str.strip()
|
554 |
+
split_portfolio['PF'] = split_portfolio['PF'].str.strip()
|
555 |
+
split_portfolio['C'] = split_portfolio['C'].str.strip()
|
556 |
+
split_portfolio['G'] = split_portfolio['G'].str.strip()
|
557 |
+
split_portfolio['F'] = split_portfolio['F'].str.strip()
|
558 |
+
split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
|
559 |
+
|
560 |
+
split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
|
561 |
+
split_portfolio['SG'].map(player_salary_dict),
|
562 |
+
split_portfolio['SF'].map(player_salary_dict),
|
563 |
+
split_portfolio['PF'].map(player_salary_dict),
|
564 |
+
split_portfolio['C'].map(player_salary_dict),
|
565 |
+
split_portfolio['G'].map(player_salary_dict),
|
566 |
+
split_portfolio['F'].map(player_salary_dict),
|
567 |
+
split_portfolio['UTIL'].map(player_salary_dict)])
|
568 |
+
|
569 |
+
split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
|
570 |
+
split_portfolio['SG'].map(player_proj_dict),
|
571 |
+
split_portfolio['SF'].map(player_proj_dict),
|
572 |
+
split_portfolio['PF'].map(player_proj_dict),
|
573 |
+
split_portfolio['C'].map(player_proj_dict),
|
574 |
+
split_portfolio['G'].map(player_proj_dict),
|
575 |
+
split_portfolio['F'].map(player_proj_dict),
|
576 |
+
split_portfolio['UTIL'].map(player_proj_dict)])
|
577 |
+
|
578 |
+
|
579 |
+
split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
|
580 |
+
split_portfolio['SG'].map(player_own_dict),
|
581 |
+
split_portfolio['SF'].map(player_own_dict),
|
582 |
+
split_portfolio['PF'].map(player_own_dict),
|
583 |
+
split_portfolio['C'].map(player_own_dict),
|
584 |
+
split_portfolio['G'].map(player_own_dict),
|
585 |
+
split_portfolio['F'].map(player_own_dict),
|
586 |
+
split_portfolio['UTIL'].map(player_own_dict)])
|
587 |
+
|
588 |
+
st.table(split_portfolio.head(10))
|
589 |
+
|
590 |
+
except:
|
591 |
+
split_portfolio = portfolio_dataframe
|
592 |
+
|
593 |
+
split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
|
594 |
+
split_portfolio['SG'].map(player_salary_dict),
|
595 |
+
split_portfolio['SF'].map(player_salary_dict),
|
596 |
+
split_portfolio['PF'].map(player_salary_dict),
|
597 |
+
split_portfolio['C'].map(player_salary_dict),
|
598 |
+
split_portfolio['G'].map(player_salary_dict),
|
599 |
+
split_portfolio['F'].map(player_salary_dict),
|
600 |
+
split_portfolio['UTIL'].map(player_salary_dict)])
|
601 |
+
|
602 |
+
split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
|
603 |
+
split_portfolio['SG'].map(player_proj_dict),
|
604 |
+
split_portfolio['SF'].map(player_proj_dict),
|
605 |
+
split_portfolio['PF'].map(player_proj_dict),
|
606 |
+
split_portfolio['C'].map(player_proj_dict),
|
607 |
+
split_portfolio['G'].map(player_proj_dict),
|
608 |
+
split_portfolio['F'].map(player_proj_dict),
|
609 |
+
split_portfolio['UTIL'].map(player_proj_dict)])
|
610 |
+
|
611 |
+
|
612 |
+
split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
|
613 |
+
split_portfolio['SG'].map(player_own_dict),
|
614 |
+
split_portfolio['SF'].map(player_own_dict),
|
615 |
+
split_portfolio['PF'].map(player_own_dict),
|
616 |
+
split_portfolio['C'].map(player_own_dict),
|
617 |
+
split_portfolio['G'].map(player_own_dict),
|
618 |
+
split_portfolio['F'].map(player_own_dict),
|
619 |
+
split_portfolio['UTIL'].map(player_own_dict)])
|
620 |
+
|
621 |
+
gc.collect()
|
622 |
+
|
623 |
+
with tab2:
|
624 |
+
col1, col2 = st.columns([1, 7])
|
625 |
+
with col1:
|
626 |
+
st.info(t_stamp)
|
627 |
+
if st.button("Load/Reset Data", key='reset1'):
|
628 |
+
st.cache_data.clear()
|
629 |
+
for key in st.session_state.keys():
|
630 |
+
del st.session_state[key]
|
631 |
+
dk_roo_raw = load_dk_player_projections()
|
632 |
+
fd_roo_raw = load_fd_player_projections()
|
633 |
+
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
634 |
+
dkid_dict, fdid_dict = set_export_ids()
|
635 |
+
|
636 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'User'))
|
637 |
+
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
638 |
+
if site_var1 == 'Draftkings':
|
639 |
+
if slate_var1 == 'User':
|
640 |
+
raw_baselines = proj_dataframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
641 |
+
elif slate_var1 != 'User':
|
642 |
+
raw_baselines = dk_roo_raw
|
643 |
+
elif site_var1 == 'Fanduel':
|
644 |
+
if slate_var1 == 'User':
|
645 |
+
raw_baselines = proj_dataframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
646 |
+
elif slate_var1 != 'User':
|
647 |
+
raw_baselines = fd_roo_raw
|
648 |
+
|
649 |
+
st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation")
|
650 |
+
insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes'), key='insert_port1')
|
651 |
+
if insert_port1 == 'Yes':
|
652 |
+
insert_port = 1
|
653 |
+
elif insert_port1 == 'No':
|
654 |
+
insert_port = 0
|
655 |
+
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large'))
|
656 |
+
if contest_var1 == 'Small':
|
657 |
+
Contest_Size = 500
|
658 |
+
elif contest_var1 == 'Medium':
|
659 |
+
Contest_Size = 2500
|
660 |
+
elif contest_var1 == 'Large':
|
661 |
+
Contest_Size = 5000
|
662 |
+
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
|
663 |
+
if strength_var1 == 'Not Very':
|
664 |
+
sharp_split = .33
|
665 |
+
Strength_var = .50
|
666 |
+
scaling_var = 5
|
667 |
+
elif strength_var1 == 'Average':
|
668 |
+
sharp_split = .50
|
669 |
+
Strength_var = .25
|
670 |
+
scaling_var = 10
|
671 |
+
elif strength_var1 == 'Very':
|
672 |
+
sharp_split = .75
|
673 |
+
Strength_var = .01
|
674 |
+
scaling_var = 15
|
675 |
+
|
676 |
+
Sort_function = 'Median'
|
677 |
+
Sim_function = 'Projection'
|
678 |
+
|
679 |
+
if Contest_Size <= 1000:
|
680 |
+
strength_grow = .01
|
681 |
+
elif Contest_Size > 1000 and Contest_Size <= 2500:
|
682 |
+
strength_grow = .025
|
683 |
+
elif Contest_Size > 2500 and Contest_Size <= 5000:
|
684 |
+
strength_grow = .05
|
685 |
+
elif Contest_Size > 5000 and Contest_Size <= 20000:
|
686 |
+
strength_grow = .075
|
687 |
+
elif Contest_Size > 20000:
|
688 |
+
strength_grow = .1
|
689 |
+
|
690 |
+
field_growth = 100 * strength_grow
|
691 |
+
|
692 |
+
with col2:
|
693 |
+
with st.container():
|
694 |
+
if st.button("Simulate Contest"):
|
695 |
+
with st.container():
|
696 |
+
for key in st.session_state.keys():
|
697 |
+
del st.session_state[key]
|
698 |
+
|
699 |
+
if slate_var1 == 'User':
|
700 |
+
initial_proj = proj_dataframe[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
701 |
+
|
702 |
+
# Define the calculation to be applied
|
703 |
+
def calculate_own(position, own, mean_own, factor, max_own=85):
|
704 |
+
return np.where((position == 'C') & (own - mean_own >= 0),
|
705 |
+
own * (factor * (own - mean_own) / 100) + mean_own,
|
706 |
+
own)
|
707 |
+
|
708 |
+
# Set the factors based on the contest_var1
|
709 |
+
factor_c, factor_other = {
|
710 |
+
'Small': (10, 5),
|
711 |
+
'Medium': (6, 3),
|
712 |
+
'Large': (3, 1.5),
|
713 |
+
}[contest_var1]
|
714 |
+
|
715 |
+
# Apply the calculation to the DataFrame
|
716 |
+
initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_c if row['Position'] == 'C' else factor_other), axis=1)
|
717 |
+
initial_proj['Own%'] = initial_proj['Own%'].clip(upper=85)
|
718 |
+
initial_proj['Own'] = initial_proj['Own%'] * (800 / initial_proj['Own%'].sum())
|
719 |
+
|
720 |
+
# Drop unnecessary columns and create the final DataFrame
|
721 |
+
Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
722 |
+
|
723 |
+
elif slate_var1 != 'User':
|
724 |
+
# Copy only the necessary columns
|
725 |
+
initial_proj = raw_baselines[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
726 |
+
|
727 |
+
# Define the calculation to be applied
|
728 |
+
def calculate_own(position, own, mean_own, factor, max_own=85):
|
729 |
+
return np.where((position == 'C') & (own - mean_own >= 0),
|
730 |
+
own * (factor * (own - mean_own) / 100) + mean_own,
|
731 |
+
own)
|
732 |
+
|
733 |
+
# Set the factors based on the contest_var1
|
734 |
+
factor_c, factor_other = {
|
735 |
+
'Small': (10, 5),
|
736 |
+
'Medium': (6, 3),
|
737 |
+
'Large': (3, 1.5),
|
738 |
+
}[contest_var1]
|
739 |
+
|
740 |
+
# Apply the calculation to the DataFrame
|
741 |
+
initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_c if row['Position'] == 'C' else factor_other), axis=1)
|
742 |
+
initial_proj['Own%'] = initial_proj['Own%'].clip(upper=85)
|
743 |
+
initial_proj['Own'] = initial_proj['Own%'] * (800 / initial_proj['Own%'].sum())
|
744 |
+
|
745 |
+
# Drop unnecessary columns and create the final DataFrame
|
746 |
+
Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
747 |
+
|
748 |
+
if insert_port == 1:
|
749 |
+
UserPortfolio = portfolio_dataframe[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']]
|
750 |
+
elif insert_port == 0:
|
751 |
+
UserPortfolio = pd.DataFrame(columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'])
|
752 |
+
|
753 |
+
Overall_Proj.replace('', np.nan, inplace=True)
|
754 |
+
Overall_Proj = Overall_Proj.dropna(subset=['Median'])
|
755 |
+
Overall_Proj = Overall_Proj.assign(Value=lambda x: (x.Median / (x.Salary / 1000)))
|
756 |
+
Overall_Proj['Sort_var'] = (Overall_Proj['Median'].rank(ascending=False) + Overall_Proj['Value'].rank(ascending=False)) / 2
|
757 |
+
Overall_Proj = Overall_Proj.sort_values(by='Sort_var', ascending=False)
|
758 |
+
Overall_Proj['Own'] = np.where((Overall_Proj['Median'] > 0) & (Overall_Proj['Own'] == 0), 1, Overall_Proj['Own'])
|
759 |
+
Overall_Proj = Overall_Proj.loc[Overall_Proj['Own'] > 0]
|
760 |
+
|
761 |
+
Overall_Proj['Floor'] = Overall_Proj['Median'] * .25
|
762 |
+
Overall_Proj['Ceiling'] = Overall_Proj['Median'] * 1.75
|
763 |
+
Overall_Proj['STDev'] = Overall_Proj['Median'] / 4
|
764 |
+
|
765 |
+
Teams_used = Overall_Proj['Team'].drop_duplicates().reset_index(drop=True)
|
766 |
+
Teams_used = Teams_used.reset_index()
|
767 |
+
Teams_used['team_item'] = Teams_used['index'] + 1
|
768 |
+
Teams_used = Teams_used.drop(columns=['index'])
|
769 |
+
Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
|
770 |
+
|
771 |
+
team_list = Teams_used['Team'].to_list()
|
772 |
+
item_list = Teams_used['team_item'].to_list()
|
773 |
+
|
774 |
+
FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01)
|
775 |
+
FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size))
|
776 |
+
|
777 |
+
if FieldStrength < 0:
|
778 |
+
FieldStrength = Strength_var
|
779 |
+
field_split = Strength_var
|
780 |
+
|
781 |
+
for checkVar in range(len(team_list)):
|
782 |
+
Overall_Proj['Team'] = Overall_Proj['Team'].replace(team_list, item_list)
|
783 |
+
|
784 |
+
pgs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('PG')]
|
785 |
+
pgs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
786 |
+
pgs_raw = pgs_raw.reset_index(drop=True)
|
787 |
+
pgs_raw = pgs_raw.sort_values(by=['Median'], ascending=False)
|
788 |
+
|
789 |
+
sgs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('SG')]
|
790 |
+
sgs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
791 |
+
sgs_raw = sgs_raw.reset_index(drop=True)
|
792 |
+
sgs_raw = sgs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
793 |
+
|
794 |
+
sfs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('SF')]
|
795 |
+
sfs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
796 |
+
sfs_raw = sfs_raw.reset_index(drop=True)
|
797 |
+
sfs_raw = sfs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
798 |
+
|
799 |
+
pfs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('PF')]
|
800 |
+
pfs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
801 |
+
pfs_raw = pfs_raw.reset_index(drop=True)
|
802 |
+
pfs_raw = pfs_raw.sort_values(by=['Own', 'Median'], ascending=False)
|
803 |
+
|
804 |
+
cs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('C')]
|
805 |
+
cs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
806 |
+
cs_raw = cs_raw.reset_index(drop=True)
|
807 |
+
cs_raw = cs_raw.sort_values(by=['Own', 'Median'], ascending=False)
|
808 |
+
|
809 |
+
gs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('G')]
|
810 |
+
gs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
811 |
+
gs_raw = gs_raw.reset_index(drop=True)
|
812 |
+
gs_raw = gs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
813 |
+
|
814 |
+
fs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('F')]
|
815 |
+
fs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
816 |
+
fs_raw = fs_raw.reset_index(drop=True)
|
817 |
+
fs_raw = fs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
818 |
+
|
819 |
+
pos_players = pd.concat([pgs_raw, sgs_raw, sfs_raw, pfs_raw, cs_raw, gs_raw, fs_raw])
|
820 |
+
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
821 |
+
pos_players = pos_players.reset_index(drop=True)
|
822 |
+
|
823 |
+
if insert_port == 1:
|
824 |
+
try:
|
825 |
+
# Initialize an empty DataFrame for Raw Portfolio
|
826 |
+
Raw_Portfolio = pd.DataFrame()
|
827 |
+
|
828 |
+
# Loop through each position and split the data accordingly
|
829 |
+
positions = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
|
830 |
+
for pos in positions:
|
831 |
+
temp_df = UserPortfolio[pos].str.split("(", n=1, expand=True)
|
832 |
+
temp_df.columns = [pos, 'Drop']
|
833 |
+
Raw_Portfolio = pd.concat([Raw_Portfolio, temp_df], axis=1)
|
834 |
+
|
835 |
+
# Select only necessary columns and strip white spaces
|
836 |
+
CleanPortfolio = Raw_Portfolio[positions].apply(lambda x: x.str.strip())
|
837 |
+
CleanPortfolio.reset_index(inplace=True)
|
838 |
+
CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
|
839 |
+
CleanPortfolio.drop(columns=['index'], inplace=True)
|
840 |
+
|
841 |
+
CleanPortfolio.replace('', np.nan, inplace=True)
|
842 |
+
CleanPortfolio.dropna(subset=['PG'], inplace=True)
|
843 |
+
|
844 |
+
# Create frequency table for players
|
845 |
+
cleaport_players = pd.DataFrame(
|
846 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
|
847 |
+
columns=['Player', 'Freq']
|
848 |
+
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
849 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
850 |
+
|
851 |
+
# Merge and update nerf_frame
|
852 |
+
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
853 |
+
for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
|
854 |
+
nerf_frame[col] *= 0.90
|
855 |
+
except:
|
856 |
+
CleanPortfolio = UserPortfolio.reset_index()
|
857 |
+
CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
|
858 |
+
CleanPortfolio.drop(columns=['index'], inplace=True)
|
859 |
+
|
860 |
+
CleanPortfolio.replace('', np.nan, inplace=True)
|
861 |
+
CleanPortfolio.dropna(subset=['PG'], inplace=True)
|
862 |
+
|
863 |
+
# Create frequency table for players
|
864 |
+
cleaport_players = pd.DataFrame(
|
865 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
|
866 |
+
columns=['Player', 'Freq']
|
867 |
+
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
868 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
869 |
+
|
870 |
+
# Merge and update nerf_frame
|
871 |
+
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
872 |
+
for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
|
873 |
+
nerf_frame[col] *= 0.90
|
874 |
+
|
875 |
+
elif insert_port == 0:
|
876 |
+
CleanPortfolio = UserPortfolio
|
877 |
+
cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:9].values, return_counts=True)),
|
878 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
879 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
880 |
+
nerf_frame = Overall_Proj
|
881 |
+
|
882 |
+
ref_dict = {
|
883 |
+
'pos':['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'],
|
884 |
+
'pos_dfs':['PG_Table', 'SG_Table', 'SF_Table', 'PF_Table', 'C_Table', 'G_Table', 'F_Table', 'UTIL_Table'],
|
885 |
+
'pos_dicts':['pg_dict', 'sg_dict', 'sf_dict', 'pf_dict', 'c_dict', 'g_dict', 'f_dict', 'util_dict']
|
886 |
+
}
|
887 |
+
|
888 |
+
maps_dict = {
|
889 |
+
'Floor_map':dict(zip(Overall_Proj.Player,Overall_Proj.Floor)),
|
890 |
+
'Projection_map':dict(zip(Overall_Proj.Player,Overall_Proj.Median)),
|
891 |
+
'Ceiling_map':dict(zip(Overall_Proj.Player,Overall_Proj.Ceiling)),
|
892 |
+
'Salary_map':dict(zip(Overall_Proj.Player,Overall_Proj.Salary)),
|
893 |
+
'Pos_map':dict(zip(Overall_Proj.Player,Overall_Proj.Position)),
|
894 |
+
'Own_map':dict(zip(Overall_Proj.Player,Overall_Proj.Own)),
|
895 |
+
'Team_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team)),
|
896 |
+
'STDev_map':dict(zip(Overall_Proj.Player,Overall_Proj.STDev)),
|
897 |
+
'team_check_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team))
|
898 |
+
}
|
899 |
+
|
900 |
+
up_dict = {
|
901 |
+
'Floor_map':dict(zip(cleaport_players.Player,nerf_frame.Floor)),
|
902 |
+
'Projection_map':dict(zip(cleaport_players.Player,nerf_frame.Median)),
|
903 |
+
'Ceiling_map':dict(zip(cleaport_players.Player,nerf_frame.Ceiling)),
|
904 |
+
'Salary_map':dict(zip(cleaport_players.Player,nerf_frame.Salary)),
|
905 |
+
'Pos_map':dict(zip(cleaport_players.Player,nerf_frame.Position)),
|
906 |
+
'Own_map':dict(zip(cleaport_players.Player,nerf_frame.Own)),
|
907 |
+
'Team_map':dict(zip(cleaport_players.Player,nerf_frame.Team)),
|
908 |
+
'STDev_map':dict(zip(cleaport_players.Player,nerf_frame.STDev)),
|
909 |
+
'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
|
910 |
+
}
|
911 |
+
|
912 |
+
FinalPortfolio, maps_dict = run_seed_frame(5, Strength_var, strength_grow, Teams_used, 1000000, field_growth)
|
913 |
+
|
914 |
+
Sim_Winners = sim_contest(2500, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port)
|
915 |
+
|
916 |
+
# Initial setup
|
917 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
918 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
919 |
+
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['Projection'].astype(str) + Sim_Winner_Frame['Salary'].astype(str) + Sim_Winner_Frame['Own'].astype(str)
|
920 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
921 |
+
|
922 |
+
# Type Casting
|
923 |
+
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32}
|
924 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
925 |
+
|
926 |
+
del FinalPortfolio, insert_port, type_cast_dict
|
927 |
+
|
928 |
+
# Sorting
|
929 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
930 |
+
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
931 |
+
|
932 |
+
# Data Copying
|
933 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
934 |
+
|
935 |
+
# Data Copying
|
936 |
+
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
937 |
+
|
938 |
+
# Conditional Replacement
|
939 |
+
columns_to_replace = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
|
940 |
+
|
941 |
+
if site_var1 == 'Draftkings':
|
942 |
+
replace_dict = dkid_dict
|
943 |
+
elif site_var1 == 'Fanduel':
|
944 |
+
replace_dict = fdid_dict
|
945 |
+
|
946 |
+
for col in columns_to_replace:
|
947 |
+
st.session_state.Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
948 |
+
|
949 |
+
del replace_dict, Sim_Winner_Frame, Sim_Winners
|
950 |
+
|
951 |
+
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:9].values, return_counts=True)),
|
952 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
953 |
+
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
954 |
+
st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(maps_dict['Pos_map'])
|
955 |
+
st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(maps_dict['Salary_map'])
|
956 |
+
st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(maps_dict['Own_map']) / 100
|
957 |
+
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(2500)
|
958 |
+
st.session_state.player_freq['Edge'] = st.session_state.player_freq['Exposure'] - st.session_state.player_freq['Proj Own']
|
959 |
+
st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(maps_dict['Team_map'])
|
960 |
+
for checkVar in range(len(team_list)):
|
961 |
+
st.session_state.player_freq['Team'] = st.session_state.player_freq['Team'].replace(item_list, team_list)
|
962 |
+
|
963 |
+
with st.container():
|
964 |
+
if 'player_freq' in st.session_state:
|
965 |
+
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
|
966 |
+
if player_split_var2 == 'Specific Players':
|
967 |
+
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
|
968 |
+
elif player_split_var2 == 'Full Players':
|
969 |
+
find_var2 = st.session_state.player_freq.Player.values.tolist()
|
970 |
+
|
971 |
+
if player_split_var2 == 'Specific Players':
|
972 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
|
973 |
+
if player_split_var2 == 'Full Players':
|
974 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
|
975 |
+
if 'Sim_Winner_Display' in st.session_state:
|
976 |
+
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
|
977 |
+
# if 'Sim_Winner_Export' in st.session_state:
|
978 |
+
# st.download_button(
|
979 |
+
# label="Export Full Frame",
|
980 |
+
# data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
981 |
+
# file_name='NFL_consim_export.csv',
|
982 |
+
# mime='text/csv',
|
983 |
+
# )
|
984 |
+
|
985 |
+
with st.container():
|
986 |
+
tab1 = st.tabs(['Overall Exposures'])
|
987 |
+
with tab1:
|
988 |
+
if 'player_freq' in st.session_state:
|
989 |
+
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
990 |
+
# st.download_button(
|
991 |
+
# label="Export Exposures",
|
992 |
+
# data=st.session_state.player_freq.to_csv().encode('utf-8'),
|
993 |
+
# file_name='player_freq_export.csv',
|
994 |
+
# mime='text/csv',
|
995 |
+
# )
|
996 |
+
|
997 |
+
del gcservice_account
|
998 |
+
del dk_roo_raw, fd_roo_raw
|
999 |
+
del t_stamp
|
1000 |
+
del dkid_dict, fdid_dict
|
1001 |
+
del static_exposure, overall_exposure
|
1002 |
+
del insert_port1, Contest_Size, sharp_split, Strength_var, scaling_var, Sort_function, Sim_function, strength_grow, field_growth
|
1003 |
+
del raw_baselines
|
1004 |
+
del freq_format
|
1005 |
+
|
1006 |
+
gc.collect()
|