Multichem commited on
Commit
b24cf91
·
1 Parent(s): b478d16

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -14
app.py CHANGED
@@ -685,22 +685,22 @@ with tab2:
685
  if slate_var1 == 'User':
686
  initial_proj = proj_dataframe[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
687
 
688
- # Define the calculation to be applied
689
- def calculate_own(position, own, mean_own, factor, max_own=85):
690
- return np.where((position == 'C') & (own - mean_own >= 0),
691
- own * (factor * (own - mean_own) / 100) + mean_own,
692
- own)
693
 
694
- # Set the factors based on the contest_var1
695
- factor_c, factor_other = {
696
- 'Small': (10, 5),
697
- 'Medium': (6, 3),
698
- 'Large': (3, 1.5),
699
- }[contest_var1]
700
 
701
- # Apply the calculation to the DataFrame
702
- initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_c if row['Position'] == 'C' else factor_other), axis=1)
703
- initial_proj['Own%'] = initial_proj['Own%'].clip(upper=85)
704
  initial_proj['Own'] = initial_proj['Own%'] * (800 / initial_proj['Own%'].sum())
705
 
706
  # Drop unnecessary columns and create the final DataFrame
 
685
  if slate_var1 == 'User':
686
  initial_proj = proj_dataframe[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
687
 
688
+ # # Define the calculation to be applied
689
+ # def calculate_own(position, own, mean_own, factor, max_own=85):
690
+ # return np.where((position == 'C') & (own - mean_own >= 0),
691
+ # own * (factor * (own - mean_own) / 100) + mean_own,
692
+ # own)
693
 
694
+ # # Set the factors based on the contest_var1
695
+ # factor_c, factor_other = {
696
+ # 'Small': (10, 5),
697
+ # 'Medium': (6, 3),
698
+ # 'Large': (3, 1.5),
699
+ # }[contest_var1]
700
 
701
+ # # Apply the calculation to the DataFrame
702
+ # initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_c if row['Position'] == 'C' else factor_other), axis=1)
703
+ # initial_proj['Own%'] = initial_proj['Own%'].clip(upper=85)
704
  initial_proj['Own'] = initial_proj['Own%'] * (800 / initial_proj['Own%'].sum())
705
 
706
  # Drop unnecessary columns and create the final DataFrame