James McCool commited on
Commit
e2120eb
·
1 Parent(s): fec28b8

Add custom tab styling and layout improvements to Streamlit app

Browse files
Files changed (1) hide show
  1. app.py +412 -384
app.py CHANGED
@@ -21,6 +21,37 @@ freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
21
  dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
22
  fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  @st.cache_data(ttl = 60)
25
  def init_DK_seed_frames(load_size):
26
 
@@ -195,6 +226,386 @@ dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
195
  fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
196
 
197
  tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
 
199
  with tab2:
200
  col1, col2 = st.columns([1, 7])
@@ -354,387 +765,4 @@ with tab2:
354
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
355
 
356
  if 'data_export_display' in st.session_state:
357
- st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
358
-
359
- with tab1:
360
- col1, col2 = st.columns([1, 7])
361
- with col1:
362
- if st.button("Load/Reset Data", key='reset2'):
363
- st.cache_data.clear()
364
- for key in st.session_state.keys():
365
- del st.session_state[key]
366
- DK_seed = init_DK_seed_frames(10000)
367
- FD_seed = init_FD_seed_frames(10000)
368
- DK_secondary = init_DK_secondary_seed_frames(10000)
369
- FD_secondary = init_FD_secondary_seed_frames(10000)
370
- dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines()
371
- dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
372
- fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
373
-
374
- sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='sim_slate_var1')
375
- sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
376
-
377
- contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
378
- if contest_var1 == 'Small':
379
- Contest_Size = 1000
380
- elif contest_var1 == 'Medium':
381
- Contest_Size = 5000
382
- elif contest_var1 == 'Large':
383
- Contest_Size = 10000
384
- elif contest_var1 == 'Custom':
385
- Contest_Size = st.number_input("Insert contest size", value=100, min_value=100, max_value=100000, step=50)
386
- strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
387
- if strength_var1 == 'Not Very':
388
- sharp_split = 5000000
389
- elif strength_var1 == 'Below Average':
390
- sharp_split = 2500000
391
- elif strength_var1 == 'Average':
392
- sharp_split = 100000
393
- elif strength_var1 == 'Above Average':
394
- sharp_split = 50000
395
- elif strength_var1 == 'Very':
396
- sharp_split = 10000
397
-
398
-
399
- with col2:
400
- if st.button("Run Contest Sim"):
401
- if 'working_seed' in st.session_state:
402
- st.session_state.maps_dict = {
403
- 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
404
- 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
405
- 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
406
- 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
407
- 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
408
- 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
409
- }
410
- Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
411
- Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
412
-
413
- # Initial setup
414
- Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
415
- Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
416
- Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
417
- Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
418
-
419
- # Type Casting
420
- type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
421
- Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
422
-
423
- # Sorting
424
- st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
425
- st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
426
-
427
- # Data Copying
428
- st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
429
-
430
- # Data Copying
431
- st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
432
-
433
- else:
434
- if sim_site_var1 == 'Draftkings':
435
- if sim_slate_var1 == 'Main Slate':
436
- st.session_state.working_seed = init_DK_seed_frames(sharp_split)
437
- dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
438
- raw_baselines = dk_raw
439
- column_names = dk_columns
440
- elif sim_slate_var1 == 'Secondary Slate':
441
- st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split)
442
- dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
443
- raw_baselines = dk_secondary
444
- column_names = dk_columns
445
-
446
- elif sim_site_var1 == 'Fanduel':
447
- if sim_slate_var1 == 'Main Slate':
448
- st.session_state.working_seed = init_FD_seed_frames(sharp_split)
449
- fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
450
- raw_baselines = fd_raw
451
- column_names = fd_columns
452
- elif sim_slate_var1 == 'Secondary Slate':
453
- st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split)
454
- fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
455
- raw_baselines = fd_secondary
456
- column_names = fd_columns
457
-
458
- st.session_state.maps_dict = {
459
- 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
460
- 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
461
- 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
462
- 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
463
- 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
464
- 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
465
- }
466
- Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
467
- Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
468
-
469
- # Initial setup
470
- Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
471
- Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
472
- Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
473
- Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
474
-
475
- # Type Casting
476
- type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
477
- Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
478
-
479
- # Sorting
480
- st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
481
- st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
482
-
483
- # Data Copying
484
- st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
485
-
486
- # Data Copying
487
- st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
488
- st.session_state.freq_copy = st.session_state.Sim_Winner_Display
489
-
490
- if sim_site_var1 == 'Draftkings':
491
- freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:8].values, return_counts=True)),
492
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
493
- elif sim_site_var1 == 'Fanduel':
494
- freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
495
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
496
- freq_working['Freq'] = freq_working['Freq'].astype(int)
497
- freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
498
- freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
499
- freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
500
- freq_working['Exposure'] = freq_working['Freq']/(1000)
501
- freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
502
- freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
503
- st.session_state.player_freq = freq_working.copy()
504
-
505
- if sim_site_var1 == 'Draftkings':
506
- pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)),
507
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
508
- elif sim_site_var1 == 'Fanduel':
509
- pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
510
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
511
- pg_working['Freq'] = pg_working['Freq'].astype(int)
512
- pg_working['Position'] = pg_working['Player'].map(st.session_state.maps_dict['Pos_map'])
513
- pg_working['Salary'] = pg_working['Player'].map(st.session_state.maps_dict['Salary_map'])
514
- pg_working['Proj Own'] = pg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
515
- pg_working['Exposure'] = pg_working['Freq']/(1000)
516
- pg_working['Edge'] = pg_working['Exposure'] - pg_working['Proj Own']
517
- pg_working['Team'] = pg_working['Player'].map(st.session_state.maps_dict['Team_map'])
518
- st.session_state.pg_freq = pg_working.copy()
519
-
520
- if sim_site_var1 == 'Draftkings':
521
- sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:2].values, return_counts=True)),
522
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
523
- elif sim_site_var1 == 'Fanduel':
524
- sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)),
525
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
526
- sg_working['Freq'] = sg_working['Freq'].astype(int)
527
- sg_working['Position'] = sg_working['Player'].map(st.session_state.maps_dict['Pos_map'])
528
- sg_working['Salary'] = sg_working['Player'].map(st.session_state.maps_dict['Salary_map'])
529
- sg_working['Proj Own'] = sg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
530
- sg_working['Exposure'] = sg_working['Freq']/(1000)
531
- sg_working['Edge'] = sg_working['Exposure'] - sg_working['Proj Own']
532
- sg_working['Team'] = sg_working['Player'].map(st.session_state.maps_dict['Team_map'])
533
- st.session_state.sg_freq = sg_working.copy()
534
-
535
- if sim_site_var1 == 'Draftkings':
536
- sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:3].values, return_counts=True)),
537
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
538
- elif sim_site_var1 == 'Fanduel':
539
- sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)),
540
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
541
- sf_working['Freq'] = sf_working['Freq'].astype(int)
542
- sf_working['Position'] = sf_working['Player'].map(st.session_state.maps_dict['Pos_map'])
543
- sf_working['Salary'] = sf_working['Player'].map(st.session_state.maps_dict['Salary_map'])
544
- sf_working['Proj Own'] = sf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
545
- sf_working['Exposure'] = sf_working['Freq']/(1000)
546
- sf_working['Edge'] = sf_working['Exposure'] - sf_working['Proj Own']
547
- sf_working['Team'] = sf_working['Player'].map(st.session_state.maps_dict['Team_map'])
548
- st.session_state.sf_freq = sf_working.copy()
549
-
550
- if sim_site_var1 == 'Draftkings':
551
- pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,3:4].values, return_counts=True)),
552
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
553
- elif sim_site_var1 == 'Fanduel':
554
- pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)),
555
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
556
- pf_working['Freq'] = pf_working['Freq'].astype(int)
557
- pf_working['Position'] = pf_working['Player'].map(st.session_state.maps_dict['Pos_map'])
558
- pf_working['Salary'] = pf_working['Player'].map(st.session_state.maps_dict['Salary_map'])
559
- pf_working['Proj Own'] = pf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
560
- pf_working['Exposure'] = pf_working['Freq']/(1000)
561
- pf_working['Edge'] = pf_working['Exposure'] - pf_working['Proj Own']
562
- pf_working['Team'] = pf_working['Player'].map(st.session_state.maps_dict['Team_map'])
563
- st.session_state.pf_freq = pf_working.copy()
564
-
565
- if sim_site_var1 == 'Draftkings':
566
- c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:5].values, return_counts=True)),
567
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
568
- elif sim_site_var1 == 'Fanduel':
569
- c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
570
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
571
- c_working['Freq'] = c_working['Freq'].astype(int)
572
- c_working['Position'] = c_working['Player'].map(st.session_state.maps_dict['Pos_map'])
573
- c_working['Salary'] = c_working['Player'].map(st.session_state.maps_dict['Salary_map'])
574
- c_working['Proj Own'] = c_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
575
- c_working['Exposure'] = c_working['Freq']/(1000)
576
- c_working['Edge'] = c_working['Exposure'] - c_working['Proj Own']
577
- c_working['Team'] = c_working['Player'].map(st.session_state.maps_dict['Team_map'])
578
- st.session_state.c_freq = c_working.copy()
579
-
580
- if sim_site_var1 == 'Draftkings':
581
- g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,5:6].values, return_counts=True)),
582
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
583
- elif sim_site_var1 == 'Fanduel':
584
- g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:4].values, return_counts=True)),
585
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
586
- g_working['Freq'] = g_working['Freq'].astype(int)
587
- g_working['Position'] = g_working['Player'].map(st.session_state.maps_dict['Pos_map'])
588
- g_working['Salary'] = g_working['Player'].map(st.session_state.maps_dict['Salary_map'])
589
- g_working['Proj Own'] = g_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
590
- g_working['Exposure'] = g_working['Freq']/(1000)
591
- g_working['Edge'] = g_working['Exposure'] - g_working['Proj Own']
592
- g_working['Team'] = g_working['Player'].map(st.session_state.maps_dict['Team_map'])
593
- st.session_state.g_freq = g_working.copy()
594
-
595
- if sim_site_var1 == 'Draftkings':
596
- f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:7].values, return_counts=True)),
597
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
598
- elif sim_site_var1 == 'Fanduel':
599
- f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:8].values, return_counts=True)),
600
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
601
- f_working['Freq'] = f_working['Freq'].astype(int)
602
- f_working['Position'] = f_working['Player'].map(st.session_state.maps_dict['Pos_map'])
603
- f_working['Salary'] = f_working['Player'].map(st.session_state.maps_dict['Salary_map'])
604
- f_working['Proj Own'] = f_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
605
- f_working['Exposure'] = f_working['Freq']/(1000)
606
- f_working['Edge'] = f_working['Exposure'] - f_working['Proj Own']
607
- f_working['Team'] = f_working['Player'].map(st.session_state.maps_dict['Team_map'])
608
- st.session_state.f_freq = f_working.copy()
609
-
610
- if sim_site_var1 == 'Draftkings':
611
- flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)),
612
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
613
- elif sim_site_var1 == 'Fanduel':
614
- flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
615
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
616
- flex_working['Freq'] = flex_working['Freq'].astype(int)
617
- flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map'])
618
- flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map'])
619
- flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
620
- flex_working['Exposure'] = flex_working['Freq']/(1000)
621
- flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
622
- flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map'])
623
- st.session_state.flex_freq = flex_working.copy()
624
-
625
- if sim_site_var1 == 'Draftkings':
626
- team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,10:11].values, return_counts=True)),
627
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
628
- elif sim_site_var1 == 'Fanduel':
629
- team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
630
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
631
- team_working['Freq'] = team_working['Freq'].astype(int)
632
- team_working['Exposure'] = team_working['Freq']/(1000)
633
- st.session_state.team_freq = team_working.copy()
634
-
635
- with st.container():
636
- if st.button("Reset Sim", key='reset_sim'):
637
- for key in st.session_state.keys():
638
- del st.session_state[key]
639
- if 'player_freq' in st.session_state:
640
- player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
641
- if player_split_var2 == 'Specific Players':
642
- find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
643
- elif player_split_var2 == 'Full Players':
644
- find_var2 = st.session_state.player_freq.Player.values.tolist()
645
-
646
- if player_split_var2 == 'Specific Players':
647
- st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
648
- if player_split_var2 == 'Full Players':
649
- st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
650
- if 'Sim_Winner_Display' in st.session_state:
651
- st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
652
- if 'Sim_Winner_Export' in st.session_state:
653
- st.download_button(
654
- label="Export Full Frame",
655
- data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
656
- file_name='MLB_consim_export.csv',
657
- mime='text/csv',
658
- )
659
- tab1, tab2 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics'])
660
-
661
- with tab1:
662
- if 'Sim_Winner_Display' in st.session_state:
663
- # Create a new dataframe with summary statistics
664
- summary_df = pd.DataFrame({
665
- 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
666
- 'Salary': [
667
- st.session_state.Sim_Winner_Display['salary'].min(),
668
- st.session_state.Sim_Winner_Display['salary'].mean(),
669
- st.session_state.Sim_Winner_Display['salary'].max(),
670
- st.session_state.Sim_Winner_Display['salary'].std()
671
- ],
672
- 'Proj': [
673
- st.session_state.Sim_Winner_Display['proj'].min(),
674
- st.session_state.Sim_Winner_Display['proj'].mean(),
675
- st.session_state.Sim_Winner_Display['proj'].max(),
676
- st.session_state.Sim_Winner_Display['proj'].std()
677
- ],
678
- 'Own': [
679
- st.session_state.Sim_Winner_Display['Own'].min(),
680
- st.session_state.Sim_Winner_Display['Own'].mean(),
681
- st.session_state.Sim_Winner_Display['Own'].max(),
682
- st.session_state.Sim_Winner_Display['Own'].std()
683
- ],
684
- 'Fantasy': [
685
- st.session_state.Sim_Winner_Display['Fantasy'].min(),
686
- st.session_state.Sim_Winner_Display['Fantasy'].mean(),
687
- st.session_state.Sim_Winner_Display['Fantasy'].max(),
688
- st.session_state.Sim_Winner_Display['Fantasy'].std()
689
- ],
690
- 'GPP_Proj': [
691
- st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
692
- st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
693
- st.session_state.Sim_Winner_Display['GPP_Proj'].max(),
694
- st.session_state.Sim_Winner_Display['GPP_Proj'].std()
695
- ]
696
- })
697
-
698
- # Set the index of the summary dataframe as the "Metric" column
699
- summary_df = summary_df.set_index('Metric')
700
-
701
- # Display the summary dataframe
702
- st.subheader("Winning Frame Statistics")
703
- st.dataframe(summary_df.style.format({
704
- 'Salary': '{:.2f}',
705
- 'Proj': '{:.2f}',
706
- 'Fantasy': '{:.2f}',
707
- 'GPP_Proj': '{:.2f}'
708
- }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
709
-
710
- with tab2:
711
- if 'Sim_Winner_Display' in st.session_state:
712
- st.write("Yeah man that's crazy")
713
-
714
- else:
715
- st.write("Simulation data or position mapping not available.")
716
- with st.container():
717
- tab1, tab2 = st.tabs(['Overall Exposures', 'Team Exposures'])
718
- with tab1:
719
- if 'player_freq' in st.session_state:
720
-
721
- st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
722
- st.download_button(
723
- label="Export Exposures",
724
- data=st.session_state.player_freq.to_csv().encode('utf-8'),
725
- file_name='player_freq_export.csv',
726
- mime='text/csv',
727
- key='overall'
728
- )
729
-
730
- with tab2:
731
- if 'team_freq' in st.session_state:
732
-
733
- st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
734
- st.download_button(
735
- label="Export Exposures",
736
- data=st.session_state.team_freq.to_csv().encode('utf-8'),
737
- file_name='team_freq.csv',
738
- mime='text/csv',
739
- key='team'
740
- )
 
21
  dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
22
  fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
23
 
24
+ st.markdown("""
25
+ <style>
26
+ /* Tab styling */
27
+ .stTabs [data-baseweb="tab-list"] {
28
+ gap: 8px;
29
+ padding: 4px;
30
+ }
31
+
32
+ .stTabs [data-baseweb="tab"] {
33
+ height: 50px;
34
+ white-space: pre-wrap;
35
+ background-color: #FFD700;
36
+ color: white;
37
+ border-radius: 10px;
38
+ gap: 1px;
39
+ padding: 10px 20px;
40
+ font-weight: bold;
41
+ transition: all 0.3s ease;
42
+ }
43
+
44
+ .stTabs [aria-selected="true"] {
45
+ background-color: #DAA520;
46
+ color: white;
47
+ }
48
+
49
+ .stTabs [data-baseweb="tab"]:hover {
50
+ background-color: #DAA520;
51
+ cursor: pointer;
52
+ }
53
+ </style>""", unsafe_allow_html=True)
54
+
55
  @st.cache_data(ttl = 60)
56
  def init_DK_seed_frames(load_size):
57
 
 
226
  fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
227
 
228
  tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
229
+
230
+ with tab1:
231
+ with st.expander("Info and Filters"):
232
+ if st.button("Load/Reset Data", key='reset2'):
233
+ st.cache_data.clear()
234
+ for key in st.session_state.keys():
235
+ del st.session_state[key]
236
+ DK_seed = init_DK_seed_frames(10000)
237
+ FD_seed = init_FD_seed_frames(10000)
238
+ DK_secondary = init_DK_secondary_seed_frames(10000)
239
+ FD_secondary = init_FD_secondary_seed_frames(10000)
240
+ dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines()
241
+ dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
242
+ fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
243
+
244
+ sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='sim_slate_var1')
245
+ sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
246
+
247
+ contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
248
+ if contest_var1 == 'Small':
249
+ Contest_Size = 1000
250
+ elif contest_var1 == 'Medium':
251
+ Contest_Size = 5000
252
+ elif contest_var1 == 'Large':
253
+ Contest_Size = 10000
254
+ elif contest_var1 == 'Custom':
255
+ Contest_Size = st.number_input("Insert contest size", value=100, min_value=100, max_value=100000, step=50)
256
+ strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
257
+ if strength_var1 == 'Not Very':
258
+ sharp_split = 5000000
259
+ elif strength_var1 == 'Below Average':
260
+ sharp_split = 2500000
261
+ elif strength_var1 == 'Average':
262
+ sharp_split = 100000
263
+ elif strength_var1 == 'Above Average':
264
+ sharp_split = 50000
265
+ elif strength_var1 == 'Very':
266
+ sharp_split = 10000
267
+
268
+ if st.button("Run Contest Sim"):
269
+ if 'working_seed' in st.session_state:
270
+ st.session_state.maps_dict = {
271
+ 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
272
+ 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
273
+ 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
274
+ 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
275
+ 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
276
+ 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
277
+ }
278
+ Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
279
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
280
+
281
+ # Initial setup
282
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
283
+ Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
284
+ Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
285
+ Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
286
+
287
+ # Type Casting
288
+ type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
289
+ Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
290
+
291
+ # Sorting
292
+ st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
293
+ st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
294
+
295
+ # Data Copying
296
+ st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
297
+
298
+ # Data Copying
299
+ st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
300
+
301
+ else:
302
+ if sim_site_var1 == 'Draftkings':
303
+ if sim_slate_var1 == 'Main Slate':
304
+ st.session_state.working_seed = init_DK_seed_frames(sharp_split)
305
+ dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
306
+ raw_baselines = dk_raw
307
+ column_names = dk_columns
308
+ elif sim_slate_var1 == 'Secondary Slate':
309
+ st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split)
310
+ dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
311
+ raw_baselines = dk_secondary
312
+ column_names = dk_columns
313
+
314
+ elif sim_site_var1 == 'Fanduel':
315
+ if sim_slate_var1 == 'Main Slate':
316
+ st.session_state.working_seed = init_FD_seed_frames(sharp_split)
317
+ fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
318
+ raw_baselines = fd_raw
319
+ column_names = fd_columns
320
+ elif sim_slate_var1 == 'Secondary Slate':
321
+ st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split)
322
+ fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
323
+ raw_baselines = fd_secondary
324
+ column_names = fd_columns
325
+
326
+ st.session_state.maps_dict = {
327
+ 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
328
+ 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
329
+ 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
330
+ 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
331
+ 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
332
+ 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
333
+ }
334
+ Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
335
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
336
+
337
+ # Initial setup
338
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
339
+ Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
340
+ Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
341
+ Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
342
+
343
+ # Type Casting
344
+ type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
345
+ Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
346
+
347
+ # Sorting
348
+ st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
349
+ st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
350
+
351
+ # Data Copying
352
+ st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
353
+
354
+ # Data Copying
355
+ st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
356
+ st.session_state.freq_copy = st.session_state.Sim_Winner_Display
357
+
358
+ if sim_site_var1 == 'Draftkings':
359
+ freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:8].values, return_counts=True)),
360
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
361
+ elif sim_site_var1 == 'Fanduel':
362
+ freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
363
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
364
+ freq_working['Freq'] = freq_working['Freq'].astype(int)
365
+ freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
366
+ freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
367
+ freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
368
+ freq_working['Exposure'] = freq_working['Freq']/(1000)
369
+ freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
370
+ freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
371
+ st.session_state.player_freq = freq_working.copy()
372
+
373
+ if sim_site_var1 == 'Draftkings':
374
+ pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)),
375
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
376
+ elif sim_site_var1 == 'Fanduel':
377
+ pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
378
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
379
+ pg_working['Freq'] = pg_working['Freq'].astype(int)
380
+ pg_working['Position'] = pg_working['Player'].map(st.session_state.maps_dict['Pos_map'])
381
+ pg_working['Salary'] = pg_working['Player'].map(st.session_state.maps_dict['Salary_map'])
382
+ pg_working['Proj Own'] = pg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
383
+ pg_working['Exposure'] = pg_working['Freq']/(1000)
384
+ pg_working['Edge'] = pg_working['Exposure'] - pg_working['Proj Own']
385
+ pg_working['Team'] = pg_working['Player'].map(st.session_state.maps_dict['Team_map'])
386
+ st.session_state.pg_freq = pg_working.copy()
387
+
388
+ if sim_site_var1 == 'Draftkings':
389
+ sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:2].values, return_counts=True)),
390
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
391
+ elif sim_site_var1 == 'Fanduel':
392
+ sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)),
393
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
394
+ sg_working['Freq'] = sg_working['Freq'].astype(int)
395
+ sg_working['Position'] = sg_working['Player'].map(st.session_state.maps_dict['Pos_map'])
396
+ sg_working['Salary'] = sg_working['Player'].map(st.session_state.maps_dict['Salary_map'])
397
+ sg_working['Proj Own'] = sg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
398
+ sg_working['Exposure'] = sg_working['Freq']/(1000)
399
+ sg_working['Edge'] = sg_working['Exposure'] - sg_working['Proj Own']
400
+ sg_working['Team'] = sg_working['Player'].map(st.session_state.maps_dict['Team_map'])
401
+ st.session_state.sg_freq = sg_working.copy()
402
+
403
+ if sim_site_var1 == 'Draftkings':
404
+ sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:3].values, return_counts=True)),
405
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
406
+ elif sim_site_var1 == 'Fanduel':
407
+ sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)),
408
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
409
+ sf_working['Freq'] = sf_working['Freq'].astype(int)
410
+ sf_working['Position'] = sf_working['Player'].map(st.session_state.maps_dict['Pos_map'])
411
+ sf_working['Salary'] = sf_working['Player'].map(st.session_state.maps_dict['Salary_map'])
412
+ sf_working['Proj Own'] = sf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
413
+ sf_working['Exposure'] = sf_working['Freq']/(1000)
414
+ sf_working['Edge'] = sf_working['Exposure'] - sf_working['Proj Own']
415
+ sf_working['Team'] = sf_working['Player'].map(st.session_state.maps_dict['Team_map'])
416
+ st.session_state.sf_freq = sf_working.copy()
417
+
418
+ if sim_site_var1 == 'Draftkings':
419
+ pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,3:4].values, return_counts=True)),
420
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
421
+ elif sim_site_var1 == 'Fanduel':
422
+ pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)),
423
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
424
+ pf_working['Freq'] = pf_working['Freq'].astype(int)
425
+ pf_working['Position'] = pf_working['Player'].map(st.session_state.maps_dict['Pos_map'])
426
+ pf_working['Salary'] = pf_working['Player'].map(st.session_state.maps_dict['Salary_map'])
427
+ pf_working['Proj Own'] = pf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
428
+ pf_working['Exposure'] = pf_working['Freq']/(1000)
429
+ pf_working['Edge'] = pf_working['Exposure'] - pf_working['Proj Own']
430
+ pf_working['Team'] = pf_working['Player'].map(st.session_state.maps_dict['Team_map'])
431
+ st.session_state.pf_freq = pf_working.copy()
432
+
433
+ if sim_site_var1 == 'Draftkings':
434
+ c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:5].values, return_counts=True)),
435
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
436
+ elif sim_site_var1 == 'Fanduel':
437
+ c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
438
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
439
+ c_working['Freq'] = c_working['Freq'].astype(int)
440
+ c_working['Position'] = c_working['Player'].map(st.session_state.maps_dict['Pos_map'])
441
+ c_working['Salary'] = c_working['Player'].map(st.session_state.maps_dict['Salary_map'])
442
+ c_working['Proj Own'] = c_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
443
+ c_working['Exposure'] = c_working['Freq']/(1000)
444
+ c_working['Edge'] = c_working['Exposure'] - c_working['Proj Own']
445
+ c_working['Team'] = c_working['Player'].map(st.session_state.maps_dict['Team_map'])
446
+ st.session_state.c_freq = c_working.copy()
447
+
448
+ if sim_site_var1 == 'Draftkings':
449
+ g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,5:6].values, return_counts=True)),
450
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
451
+ elif sim_site_var1 == 'Fanduel':
452
+ g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:4].values, return_counts=True)),
453
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
454
+ g_working['Freq'] = g_working['Freq'].astype(int)
455
+ g_working['Position'] = g_working['Player'].map(st.session_state.maps_dict['Pos_map'])
456
+ g_working['Salary'] = g_working['Player'].map(st.session_state.maps_dict['Salary_map'])
457
+ g_working['Proj Own'] = g_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
458
+ g_working['Exposure'] = g_working['Freq']/(1000)
459
+ g_working['Edge'] = g_working['Exposure'] - g_working['Proj Own']
460
+ g_working['Team'] = g_working['Player'].map(st.session_state.maps_dict['Team_map'])
461
+ st.session_state.g_freq = g_working.copy()
462
+
463
+ if sim_site_var1 == 'Draftkings':
464
+ f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:7].values, return_counts=True)),
465
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
466
+ elif sim_site_var1 == 'Fanduel':
467
+ f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:8].values, return_counts=True)),
468
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
469
+ f_working['Freq'] = f_working['Freq'].astype(int)
470
+ f_working['Position'] = f_working['Player'].map(st.session_state.maps_dict['Pos_map'])
471
+ f_working['Salary'] = f_working['Player'].map(st.session_state.maps_dict['Salary_map'])
472
+ f_working['Proj Own'] = f_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
473
+ f_working['Exposure'] = f_working['Freq']/(1000)
474
+ f_working['Edge'] = f_working['Exposure'] - f_working['Proj Own']
475
+ f_working['Team'] = f_working['Player'].map(st.session_state.maps_dict['Team_map'])
476
+ st.session_state.f_freq = f_working.copy()
477
+
478
+ if sim_site_var1 == 'Draftkings':
479
+ flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)),
480
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
481
+ elif sim_site_var1 == 'Fanduel':
482
+ flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
483
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
484
+ flex_working['Freq'] = flex_working['Freq'].astype(int)
485
+ flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map'])
486
+ flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map'])
487
+ flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
488
+ flex_working['Exposure'] = flex_working['Freq']/(1000)
489
+ flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
490
+ flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map'])
491
+ st.session_state.flex_freq = flex_working.copy()
492
+
493
+ if sim_site_var1 == 'Draftkings':
494
+ team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,10:11].values, return_counts=True)),
495
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
496
+ elif sim_site_var1 == 'Fanduel':
497
+ team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
498
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
499
+ team_working['Freq'] = team_working['Freq'].astype(int)
500
+ team_working['Exposure'] = team_working['Freq']/(1000)
501
+ st.session_state.team_freq = team_working.copy()
502
+
503
+ with st.container():
504
+ if st.button("Reset Sim", key='reset_sim'):
505
+ for key in st.session_state.keys():
506
+ del st.session_state[key]
507
+ if 'player_freq' in st.session_state:
508
+ player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
509
+ if player_split_var2 == 'Specific Players':
510
+ find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
511
+ elif player_split_var2 == 'Full Players':
512
+ find_var2 = st.session_state.player_freq.Player.values.tolist()
513
+
514
+ if player_split_var2 == 'Specific Players':
515
+ st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
516
+ if player_split_var2 == 'Full Players':
517
+ st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
518
+ if 'Sim_Winner_Display' in st.session_state:
519
+ st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
520
+ if 'Sim_Winner_Export' in st.session_state:
521
+ st.download_button(
522
+ label="Export Full Frame",
523
+ data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
524
+ file_name='MLB_consim_export.csv',
525
+ mime='text/csv',
526
+ )
527
+ tab1, tab2 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics'])
528
+
529
+ with tab1:
530
+ if 'Sim_Winner_Display' in st.session_state:
531
+ # Create a new dataframe with summary statistics
532
+ summary_df = pd.DataFrame({
533
+ 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
534
+ 'Salary': [
535
+ st.session_state.Sim_Winner_Display['salary'].min(),
536
+ st.session_state.Sim_Winner_Display['salary'].mean(),
537
+ st.session_state.Sim_Winner_Display['salary'].max(),
538
+ st.session_state.Sim_Winner_Display['salary'].std()
539
+ ],
540
+ 'Proj': [
541
+ st.session_state.Sim_Winner_Display['proj'].min(),
542
+ st.session_state.Sim_Winner_Display['proj'].mean(),
543
+ st.session_state.Sim_Winner_Display['proj'].max(),
544
+ st.session_state.Sim_Winner_Display['proj'].std()
545
+ ],
546
+ 'Own': [
547
+ st.session_state.Sim_Winner_Display['Own'].min(),
548
+ st.session_state.Sim_Winner_Display['Own'].mean(),
549
+ st.session_state.Sim_Winner_Display['Own'].max(),
550
+ st.session_state.Sim_Winner_Display['Own'].std()
551
+ ],
552
+ 'Fantasy': [
553
+ st.session_state.Sim_Winner_Display['Fantasy'].min(),
554
+ st.session_state.Sim_Winner_Display['Fantasy'].mean(),
555
+ st.session_state.Sim_Winner_Display['Fantasy'].max(),
556
+ st.session_state.Sim_Winner_Display['Fantasy'].std()
557
+ ],
558
+ 'GPP_Proj': [
559
+ st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
560
+ st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
561
+ st.session_state.Sim_Winner_Display['GPP_Proj'].max(),
562
+ st.session_state.Sim_Winner_Display['GPP_Proj'].std()
563
+ ]
564
+ })
565
+
566
+ # Set the index of the summary dataframe as the "Metric" column
567
+ summary_df = summary_df.set_index('Metric')
568
+
569
+ # Display the summary dataframe
570
+ st.subheader("Winning Frame Statistics")
571
+ st.dataframe(summary_df.style.format({
572
+ 'Salary': '{:.2f}',
573
+ 'Proj': '{:.2f}',
574
+ 'Fantasy': '{:.2f}',
575
+ 'GPP_Proj': '{:.2f}'
576
+ }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
577
+
578
+ with tab2:
579
+ if 'Sim_Winner_Display' in st.session_state:
580
+ st.write("Yeah man that's crazy")
581
+
582
+ else:
583
+ st.write("Simulation data or position mapping not available.")
584
+ with st.container():
585
+ tab1, tab2 = st.tabs(['Overall Exposures', 'Team Exposures'])
586
+ with tab1:
587
+ if 'player_freq' in st.session_state:
588
+
589
+ st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
590
+ st.download_button(
591
+ label="Export Exposures",
592
+ data=st.session_state.player_freq.to_csv().encode('utf-8'),
593
+ file_name='player_freq_export.csv',
594
+ mime='text/csv',
595
+ key='overall'
596
+ )
597
+
598
+ with tab2:
599
+ if 'team_freq' in st.session_state:
600
+
601
+ st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
602
+ st.download_button(
603
+ label="Export Exposures",
604
+ data=st.session_state.team_freq.to_csv().encode('utf-8'),
605
+ file_name='team_freq.csv',
606
+ mime='text/csv',
607
+ key='team'
608
+ )
609
 
610
  with tab2:
611
  col1, col2 = st.columns([1, 7])
 
765
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
766
 
767
  if 'data_export_display' in st.session_state:
768
+ st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)