import streamlit as st st.set_page_config(layout="wide") import numpy as np import pandas as pd import pymongo import time @st.cache_resource def init_conn(): uri = st.secrets['mongo_uri'] client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) db = client["NBA_DFS"] return db db = init_conn() percentages_format = {'Exposure': '{:.2%}'} freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'} dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] st.markdown(""" """, unsafe_allow_html=True) @st.cache_data(ttl = 60) def init_DK_seed_frames(load_size): collection = db['DK_NBA_name_map'] cursor = collection.find() raw_data = pd.DataFrame(list(cursor)) names_dict = dict(zip(raw_data['key'], raw_data['value'])) # Get the valid players from the Range of Outcomes collection collection = db["Player_Range_Of_Outcomes"] cursor = collection.find({"site": "Draftkings", "slate": "Main Slate"}) valid_players = set(pd.DataFrame(list(cursor))['Player'].unique()) collection = db["DK_NBA_seed_frame"] cursor = collection.find().limit(load_size) raw_display = pd.DataFrame(list(cursor)) raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX'] # Map names raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) # Validate lineups against valid players raw_display = validate_lineup_players(raw_display, valid_players, dict_columns) # Remove any remaining NaN values raw_display = raw_display.dropna() DK_seed = raw_display.to_numpy() return DK_seed @st.cache_data(ttl = 60) def init_DK_secondary_seed_frames(load_size): collection = db['DK_NBA_Secondary_name_map'] cursor = collection.find() raw_data = pd.DataFrame(list(cursor)) names_dict = dict(zip(raw_data['key'], raw_data['value'])) # Get the valid players from the Range of Outcomes collection collection = db["Player_Range_Of_Outcomes"] cursor = collection.find({"site": "Draftkings", "slate": "Secondary Slate"}) valid_players = set(pd.DataFrame(list(cursor))['Player'].unique()) collection = db["DK_NBA_Secondary_seed_frame"] cursor = collection.find().limit(load_size) raw_display = pd.DataFrame(list(cursor)) raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX'] # Map names raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) # Validate lineups against valid players raw_display = validate_lineup_players(raw_display, valid_players, dict_columns) # Remove any remaining NaN values raw_display = raw_display.dropna() DK_seed = raw_display.to_numpy() return DK_seed @st.cache_data(ttl = 60) def init_FD_seed_frames(load_size): collection = db['FD_NBA_name_map'] cursor = collection.find() raw_data = pd.DataFrame(list(cursor)) names_dict = dict(zip(raw_data['key'], raw_data['value'])) # Get the valid players from the Range of Outcomes collection collection = db["Player_Range_Of_Outcomes"] cursor = collection.find({"site": "Fanduel", "slate": "Main Slate"}) valid_players = set(pd.DataFrame(list(cursor))['Player'].unique()) collection = db["FD_NBA_seed_frame"] cursor = collection.find().limit(load_size) raw_display = pd.DataFrame(list(cursor)) raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1'] # Map names raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) # Validate lineups against valid players raw_display = validate_lineup_players(raw_display, valid_players, dict_columns) # Remove any remaining NaN values raw_display = raw_display.dropna() FD_seed = raw_display.to_numpy() return FD_seed @st.cache_data(ttl = 60) def init_FD_secondary_seed_frames(load_size): collection = db['FD_NBA_Secondary_name_map'] cursor = collection.find() raw_data = pd.DataFrame(list(cursor)) names_dict = dict(zip(raw_data['key'], raw_data['value'])) # Get the valid players from the Range of Outcomes collection collection = db["Player_Range_Of_Outcomes"] cursor = collection.find({"site": "Fanduel", "slate": "Secondary Slate"}) valid_players = set(pd.DataFrame(list(cursor))['Player'].unique()) collection = db["FD_NBA_Secondary_seed_frame"] cursor = collection.find().limit(load_size) raw_display = pd.DataFrame(list(cursor)) raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1'] # Map names raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict)) # Validate lineups against valid players raw_display = validate_lineup_players(raw_display, valid_players, dict_columns) # Remove any remaining NaN values raw_display = raw_display.dropna() FD_seed = raw_display.to_numpy() return FD_seed @st.cache_resource(ttl = 60) def init_baselines(): collection = db["Player_Range_Of_Outcomes"] cursor = collection.find() load_display = pd.DataFrame(list(cursor)) load_display.replace('', np.nan, inplace=True) load_display.rename(columns={"Fantasy": "Median", 'Name': 'Player', 'player_ID': 'player_id'}, inplace = True) load_display = load_display[load_display['Median'] > 0] dk_roo_raw = load_display[load_display['site'] == 'Draftkings'] dk_roo_raw = dk_roo_raw[dk_roo_raw['slate'] == 'Main Slate'] dk_roo_raw['STDev'] = dk_roo_raw['Median'] / 4 dk_raw = dk_roo_raw.dropna(subset=['Median']) fd_roo_raw = load_display[load_display['site'] == 'Fanduel'] fd_roo_raw = fd_roo_raw[fd_roo_raw['slate'] == 'Main Slate'] fd_roo_raw['STDev'] = fd_roo_raw['Median'] / 4 fd_raw = fd_roo_raw.dropna(subset=['Median']) dk_secondary_roo_raw = load_display[load_display['site'] == 'Draftkings'] dk_secondary_roo_raw = dk_secondary_roo_raw[dk_secondary_roo_raw['slate'] == 'Secondary Slate'] dk_secondary_roo_raw['STDev'] = dk_secondary_roo_raw['Median'] / 4 dk_secondary = dk_secondary_roo_raw.dropna(subset=['Median']) fd_secondary_roo_raw = load_display[load_display['site'] == 'Fanduel'] fd_secondary_roo_raw = fd_secondary_roo_raw[fd_secondary_roo_raw['slate'] == 'Secondary Slate'] fd_secondary_roo_raw['STDev'] = fd_secondary_roo_raw['Median'] / 4 fd_secondary = fd_secondary_roo_raw.dropna(subset=['Median']) return dk_raw, fd_raw, dk_secondary, fd_secondary @st.cache_data def validate_lineup_players(df, valid_players, player_columns): """ Validates that all players in specified columns exist in valid_players set Args: df: DataFrame containing lineups valid_players: Set of valid player names player_columns: List of columns containing player names Returns: DataFrame with only valid lineups """ valid_rows = df[player_columns].apply(lambda x: x.isin(valid_players)).all(axis=1) return df[valid_rows] @st.cache_data def convert_df(array): array = pd.DataFrame(array, columns=column_names) return array.to_csv().encode('utf-8') @st.cache_data def calculate_DK_value_frequencies(np_array): unique, counts = np.unique(np_array[:, :8], return_counts=True) frequencies = counts / len(np_array) # Normalize by the number of rows combined_array = np.column_stack((unique, frequencies)) return combined_array @st.cache_data def calculate_FD_value_frequencies(np_array): unique, counts = np.unique(np_array[:, :9], return_counts=True) frequencies = counts / len(np_array) # Normalize by the number of rows combined_array = np.column_stack((unique, frequencies)) return combined_array @st.cache_data def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size): SimVar = 1 Sim_Winners = [] # Pre-vectorize functions vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__) vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__) st.write('Simulating contest on frames') while SimVar <= Sim_size: fp_random = seed_frame[np.random.choice(seed_frame.shape[0], Contest_Size)] sample_arrays1 = np.c_[ fp_random, np.sum(np.random.normal( loc=vec_projection_map(fp_random[:, :-7]), scale=vec_stdev_map(fp_random[:, :-7])), axis=1) ] sample_arrays = sample_arrays1 if sim_site_var1 == 'Draftkings': final_array = sample_arrays[sample_arrays[:, 9].argsort()[::-1]] elif sim_site_var1 == 'Fanduel': final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]] best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]] Sim_Winners.append(best_lineup) SimVar += 1 return Sim_Winners dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines() dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) tab1, tab2 = st.tabs(['Contest Sims', 'Data Export']) with tab1: with st.expander("Info and Filters"): if st.button("Load/Reset Data", key='reset2'): st.cache_data.clear() for key in st.session_state.keys(): del st.session_state[key] DK_seed = init_DK_seed_frames(10000) FD_seed = init_FD_seed_frames(10000) DK_secondary = init_DK_secondary_seed_frames(10000) FD_secondary = init_FD_secondary_seed_frames(10000) dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines() dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='sim_slate_var1') sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1') contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom')) if contest_var1 == 'Small': Contest_Size = 1000 elif contest_var1 == 'Medium': Contest_Size = 5000 elif contest_var1 == 'Large': Contest_Size = 10000 elif contest_var1 == 'Custom': Contest_Size = st.number_input("Insert contest size", value=100, min_value=100, max_value=100000, step=50) strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very')) if strength_var1 == 'Not Very': sharp_split = 5000000 elif strength_var1 == 'Below Average': sharp_split = 2500000 elif strength_var1 == 'Average': sharp_split = 100000 elif strength_var1 == 'Above Average': sharp_split = 50000 elif strength_var1 == 'Very': sharp_split = 10000 if st.button("Run Contest Sim"): if 'working_seed' in st.session_state: st.session_state.maps_dict = { 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)), 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)), 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)), 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])), 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)), 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)) } Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size) Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners)) # Initial setup Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy']) Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2 Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str) Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts())) # Type Casting type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32} Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict) # Sorting st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100) st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True) # Data Copying st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy() # Data Copying st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy() else: if sim_site_var1 == 'Draftkings': if sim_slate_var1 == 'Main Slate': st.session_state.working_seed = init_DK_seed_frames(sharp_split) dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) raw_baselines = dk_raw column_names = dk_columns elif sim_slate_var1 == 'Secondary Slate': st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split) dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id)) raw_baselines = dk_secondary column_names = dk_columns elif sim_site_var1 == 'Fanduel': if sim_slate_var1 == 'Main Slate': st.session_state.working_seed = init_FD_seed_frames(sharp_split) fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) raw_baselines = fd_raw column_names = fd_columns elif sim_slate_var1 == 'Secondary Slate': st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split) fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id)) raw_baselines = fd_secondary column_names = fd_columns st.session_state.maps_dict = { 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)), 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)), 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)), 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])), 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)), 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)) } Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size) Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners)) # Initial setup Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy']) Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2 Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str) Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts())) # Type Casting type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32} Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict) # Sorting st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100) st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True) # Data Copying st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy() # Data Copying st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy() st.session_state.freq_copy = st.session_state.Sim_Winner_Display if sim_site_var1 == 'Draftkings': freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:8].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) freq_working['Freq'] = freq_working['Freq'].astype(int) freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map']) freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map']) freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 freq_working['Exposure'] = freq_working['Freq']/(1000) freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own'] freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.player_freq = freq_working.copy() if sim_site_var1 == 'Draftkings': pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) pg_working['Freq'] = pg_working['Freq'].astype(int) pg_working['Position'] = pg_working['Player'].map(st.session_state.maps_dict['Pos_map']) pg_working['Salary'] = pg_working['Player'].map(st.session_state.maps_dict['Salary_map']) pg_working['Proj Own'] = pg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 pg_working['Exposure'] = pg_working['Freq']/(1000) pg_working['Edge'] = pg_working['Exposure'] - pg_working['Proj Own'] pg_working['Team'] = pg_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.pg_freq = pg_working.copy() if sim_site_var1 == 'Draftkings': sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:2].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) sg_working['Freq'] = sg_working['Freq'].astype(int) sg_working['Position'] = sg_working['Player'].map(st.session_state.maps_dict['Pos_map']) sg_working['Salary'] = sg_working['Player'].map(st.session_state.maps_dict['Salary_map']) sg_working['Proj Own'] = sg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 sg_working['Exposure'] = sg_working['Freq']/(1000) sg_working['Edge'] = sg_working['Exposure'] - sg_working['Proj Own'] sg_working['Team'] = sg_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.sg_freq = sg_working.copy() if sim_site_var1 == 'Draftkings': sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:3].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) sf_working['Freq'] = sf_working['Freq'].astype(int) sf_working['Position'] = sf_working['Player'].map(st.session_state.maps_dict['Pos_map']) sf_working['Salary'] = sf_working['Player'].map(st.session_state.maps_dict['Salary_map']) sf_working['Proj Own'] = sf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 sf_working['Exposure'] = sf_working['Freq']/(1000) sf_working['Edge'] = sf_working['Exposure'] - sf_working['Proj Own'] sf_working['Team'] = sf_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.sf_freq = sf_working.copy() if sim_site_var1 == 'Draftkings': pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,3:4].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) pf_working['Freq'] = pf_working['Freq'].astype(int) pf_working['Position'] = pf_working['Player'].map(st.session_state.maps_dict['Pos_map']) pf_working['Salary'] = pf_working['Player'].map(st.session_state.maps_dict['Salary_map']) pf_working['Proj Own'] = pf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 pf_working['Exposure'] = pf_working['Freq']/(1000) pf_working['Edge'] = pf_working['Exposure'] - pf_working['Proj Own'] pf_working['Team'] = pf_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.pf_freq = pf_working.copy() if sim_site_var1 == 'Draftkings': c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:5].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) c_working['Freq'] = c_working['Freq'].astype(int) c_working['Position'] = c_working['Player'].map(st.session_state.maps_dict['Pos_map']) c_working['Salary'] = c_working['Player'].map(st.session_state.maps_dict['Salary_map']) c_working['Proj Own'] = c_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 c_working['Exposure'] = c_working['Freq']/(1000) c_working['Edge'] = c_working['Exposure'] - c_working['Proj Own'] c_working['Team'] = c_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.c_freq = c_working.copy() if sim_site_var1 == 'Draftkings': g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,5:6].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:4].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) g_working['Freq'] = g_working['Freq'].astype(int) g_working['Position'] = g_working['Player'].map(st.session_state.maps_dict['Pos_map']) g_working['Salary'] = g_working['Player'].map(st.session_state.maps_dict['Salary_map']) g_working['Proj Own'] = g_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 g_working['Exposure'] = g_working['Freq']/(1000) g_working['Edge'] = g_working['Exposure'] - g_working['Proj Own'] g_working['Team'] = g_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.g_freq = g_working.copy() if sim_site_var1 == 'Draftkings': f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:7].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:8].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) f_working['Freq'] = f_working['Freq'].astype(int) f_working['Position'] = f_working['Player'].map(st.session_state.maps_dict['Pos_map']) f_working['Salary'] = f_working['Player'].map(st.session_state.maps_dict['Salary_map']) f_working['Proj Own'] = f_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 f_working['Exposure'] = f_working['Freq']/(1000) f_working['Edge'] = f_working['Exposure'] - f_working['Proj Own'] f_working['Team'] = f_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.f_freq = f_working.copy() if sim_site_var1 == 'Draftkings': flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) flex_working['Freq'] = flex_working['Freq'].astype(int) flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map']) flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map']) flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 flex_working['Exposure'] = flex_working['Freq']/(1000) flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own'] flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.flex_freq = flex_working.copy() if sim_site_var1 == 'Draftkings': team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,10:11].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) team_working['Freq'] = team_working['Freq'].astype(int) team_working['Exposure'] = team_working['Freq']/(1000) st.session_state.team_freq = team_working.copy() with st.container(): if st.button("Reset Sim", key='reset_sim'): for key in st.session_state.keys(): del st.session_state[key] if 'player_freq' in st.session_state: player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2') if player_split_var2 == 'Specific Players': find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique()) elif player_split_var2 == 'Full Players': find_var2 = st.session_state.player_freq.Player.values.tolist() if player_split_var2 == 'Specific Players': st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)] if player_split_var2 == 'Full Players': st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame if 'Sim_Winner_Display' in st.session_state: st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) if 'Sim_Winner_Export' in st.session_state: st.download_button( label="Export Full Frame", data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'), file_name='MLB_consim_export.csv', mime='text/csv', ) tab1, tab2 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics']) with tab1: if 'Sim_Winner_Display' in st.session_state: # Create a new dataframe with summary statistics summary_df = pd.DataFrame({ 'Metric': ['Min', 'Average', 'Max', 'STDdev'], 'Salary': [ st.session_state.Sim_Winner_Display['salary'].min(), st.session_state.Sim_Winner_Display['salary'].mean(), st.session_state.Sim_Winner_Display['salary'].max(), st.session_state.Sim_Winner_Display['salary'].std() ], 'Proj': [ st.session_state.Sim_Winner_Display['proj'].min(), st.session_state.Sim_Winner_Display['proj'].mean(), st.session_state.Sim_Winner_Display['proj'].max(), st.session_state.Sim_Winner_Display['proj'].std() ], 'Own': [ st.session_state.Sim_Winner_Display['Own'].min(), st.session_state.Sim_Winner_Display['Own'].mean(), st.session_state.Sim_Winner_Display['Own'].max(), st.session_state.Sim_Winner_Display['Own'].std() ], 'Fantasy': [ st.session_state.Sim_Winner_Display['Fantasy'].min(), st.session_state.Sim_Winner_Display['Fantasy'].mean(), st.session_state.Sim_Winner_Display['Fantasy'].max(), st.session_state.Sim_Winner_Display['Fantasy'].std() ], 'GPP_Proj': [ st.session_state.Sim_Winner_Display['GPP_Proj'].min(), st.session_state.Sim_Winner_Display['GPP_Proj'].mean(), st.session_state.Sim_Winner_Display['GPP_Proj'].max(), st.session_state.Sim_Winner_Display['GPP_Proj'].std() ] }) # Set the index of the summary dataframe as the "Metric" column summary_df = summary_df.set_index('Metric') # Display the summary dataframe st.subheader("Winning Frame Statistics") st.dataframe(summary_df.style.format({ 'Salary': '{:.2f}', 'Proj': '{:.2f}', 'Fantasy': '{:.2f}', 'GPP_Proj': '{:.2f}' }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True) with tab2: if 'Sim_Winner_Display' in st.session_state: st.write("Yeah man that's crazy") else: st.write("Simulation data or position mapping not available.") with st.container(): tab1, tab2 = st.tabs(['Overall Exposures', 'Team Exposures']) with tab1: if 'player_freq' in st.session_state: st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True) st.download_button( label="Export Exposures", data=st.session_state.player_freq.to_csv().encode('utf-8'), file_name='player_freq_export.csv', mime='text/csv', key='overall' ) with tab2: if 'team_freq' in st.session_state: st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True) st.download_button( label="Export Exposures", data=st.session_state.team_freq.to_csv().encode('utf-8'), file_name='team_freq.csv', mime='text/csv', key='team' ) with tab2: with st.expander("Info and Filters"): if st.button("Load/Reset Data", key='reset1'): st.cache_data.clear() for key in st.session_state.keys(): del st.session_state[key] DK_seed = init_DK_seed_frames(10000) FD_seed = init_FD_seed_frames(10000) DK_secondary = init_DK_secondary_seed_frames(10000) FD_secondary = init_FD_secondary_seed_frames(10000) dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines() dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='slate_var1') site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1') sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000) lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1) if site_var1 == 'Draftkings': player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') if player_var1 == 'Specific Players': player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique()) elif player_var1 == 'Full Slate': player_var2 = dk_raw.Player.values.tolist() raw_baselines = dk_raw column_names = dk_columns elif site_var1 == 'Fanduel': player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') if player_var1 == 'Specific Players': player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique()) elif player_var1 == 'Full Slate': player_var2 = fd_raw.Player.values.tolist() raw_baselines = fd_raw column_names = fd_columns if st.button("Prepare data export", key='data_export'): if site_var1 == 'Draftkings': if 'working_seed' in st.session_state: st.session_state.working_seed = st.session_state.working_seed if player_var1 == 'Specific Players': st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var] export_column_var = 8 elif 'working_seed' not in st.session_state: if slate_var1 == 'Main Slate': st.session_state.working_seed = init_DK_seed_frames(sharp_split_var) dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) raw_baselines = dk_raw column_names = dk_columns elif slate_var1 == 'Secondary Slate': st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var) dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id)) raw_baselines = dk_secondary column_names = dk_columns if player_var1 == 'Specific Players': st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var] export_column_var = 8 data_export = st.session_state.data_export_display.copy() for col in range(export_column_var): data_export[:, col] = np.array([dk_id_dict.get(x, x) for x in data_export[:, col]]) elif site_var1 == 'Fanduel': if 'working_seed' in st.session_state: st.session_state.working_seed = st.session_state.working_seed if player_var1 == 'Specific Players': st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var] export_column_var = 9 elif 'working_seed' not in st.session_state: if slate_var1 == 'Main Slate': st.session_state.working_seed = init_FD_seed_frames(sharp_split_var) fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) raw_baselines = fd_raw column_names = fd_columns elif slate_var1 == 'Secondary Slate': st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var) fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id)) raw_baselines = fd_secondary column_names = fd_columns if player_var1 == 'Specific Players': st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var] export_column_var = 9 data_export = st.session_state.data_export_display.copy() for col in range(export_column_var): data_export[:, col] = np.array([fd_id_dict.get(x, x) for x in fd_id_dict[:, col]]) st.download_button( label="Export optimals set", data=convert_df(data_export), file_name='NBA_optimals_export.csv', mime='text/csv', ) if st.button("Load Data", key='load_data'): if site_var1 == 'Draftkings': if 'working_seed' in st.session_state: st.session_state.working_seed = st.session_state.working_seed if player_var1 == 'Specific Players': st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) elif 'working_seed' not in st.session_state: if slate_var1 == 'Main Slate': st.session_state.working_seed = init_DK_seed_frames(sharp_split_var) dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) raw_baselines = dk_raw column_names = dk_columns elif slate_var1 == 'Secondary Slate': st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var) dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id)) raw_baselines = dk_secondary column_names = dk_columns if player_var1 == 'Specific Players': st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) elif site_var1 == 'Fanduel': if 'working_seed' in st.session_state: st.session_state.working_seed = st.session_state.working_seed if player_var1 == 'Specific Players': st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) elif 'working_seed' not in st.session_state: if slate_var1 == 'Main Slate': st.session_state.working_seed = init_FD_seed_frames(sharp_split_var) fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) raw_baselines = fd_raw column_names = fd_columns elif slate_var1 == 'Secondary Slate': st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var) fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id)) raw_baselines = fd_secondary column_names = fd_columns if player_var1 == 'Specific Players': st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) if 'data_export_display' in st.session_state: st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)