Multichem commited on
Commit
a2a43d0
·
1 Parent(s): ad21cec

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +992 -0
app.py ADDED
@@ -0,0 +1,992 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ st.set_page_config(layout="wide")
3
+
4
+ for name in dir():
5
+ if not name.startswith('_'):
6
+ del globals()[name]
7
+
8
+ import numpy as np
9
+ import pandas as pd
10
+ import streamlit as st
11
+ import gspread
12
+ import random
13
+ import gc
14
+
15
+ @st.cache_resource
16
+ def init_conn():
17
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
18
+ "https://www.googleapis.com/auth/drive"]
19
+
20
+ credentials = {
21
+ "type": "service_account",
22
+ "project_id": "sheets-api-connect-378620",
23
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
24
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
25
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
26
+ "client_id": "106625872877651920064",
27
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
28
+ "token_uri": "https://oauth2.googleapis.com/token",
29
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
30
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
31
+ }
32
+
33
+ gc_con = gspread.service_account_from_dict(credentials)
34
+
35
+ return gc_con
36
+
37
+ gcservice_account = init_conn()
38
+
39
+ freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
40
+
41
+ @st.cache_resource(ttl = 300)
42
+ def init_baslines():
43
+ sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260')
44
+ worksheet = sh.worksheet('DK_Build_Up')
45
+ load_display = pd.DataFrame(worksheet.get_all_records())
46
+ load_display.replace('', np.nan, inplace=True)
47
+ load_display.rename(columns={"Fantasy": "Median", 'Name': 'Player'}, inplace = True)
48
+ dk_roo_raw = load_display.dropna(subset=['Median'])
49
+
50
+ worksheet = sh.worksheet('FD_Build_Up')
51
+ load_display = pd.DataFrame(worksheet.get_all_records())
52
+ load_display.replace('', np.nan, inplace=True)
53
+ load_display.rename(columns={"Fantasy": "Median", 'Nickname': 'Player'}, inplace = True)
54
+ fd_roo_raw = load_display.dropna(subset=['Median'])
55
+
56
+ worksheet = sh.worksheet('DK_Salaries')
57
+ load_display = pd.DataFrame(worksheet.get_all_records())
58
+ load_display.replace('', np.nan, inplace=True)
59
+ raw_display = load_display.dropna(subset=['Median'])
60
+ raw_display.rename(columns={"name": "Player"}, inplace = True)
61
+ dk_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
62
+
63
+ worksheet = sh.worksheet('FD_Salaries')
64
+ load_display = pd.DataFrame(worksheet.get_all_records())
65
+ load_display.replace('', np.nan, inplace=True)
66
+ raw_display = load_display.dropna(subset=['Median'])
67
+ raw_display.rename(columns={"name": "Player"}, inplace = True)
68
+ fd_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
69
+
70
+ return dk_roo_raw, fd_roo_raw, dk_ids, fd_ids
71
+
72
+ dk_roo_raw, fd_roo_raw, dkid_dict, fdid_dict = init_baslines()
73
+ t_stamp = f"Last Update: " + "idk man recently probably" + f" CST"
74
+
75
+ static_exposure = pd.DataFrame(columns=['Player', 'count'])
76
+ overall_exposure = pd.DataFrame(columns=['Player', 'count'])
77
+
78
+ def sim_contest(Sim_size, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port):
79
+ SimVar = 1
80
+ Sim_Winners = []
81
+ fp_array = FinalPortfolio.values
82
+
83
+ if insert_port == 1:
84
+ up_array = CleanPortfolio.values
85
+
86
+ # Pre-vectorize functions
87
+ vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
88
+ vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
89
+
90
+ if insert_port == 1:
91
+ vec_up_projection_map = np.vectorize(up_dict['Projection_map'].__getitem__)
92
+ vec_up_stdev_map = np.vectorize(up_dict['STDev_map'].__getitem__)
93
+
94
+ st.write('Simulating contest on frames')
95
+
96
+ while SimVar <= Sim_size:
97
+ if insert_port == 1:
98
+ fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size-len(CleanPortfolio))]
99
+ elif insert_port == 0:
100
+ fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
101
+
102
+ sample_arrays1 = np.c_[
103
+ fp_random,
104
+ np.sum(np.random.normal(
105
+ loc=vec_projection_map(fp_random[:, :-5]),
106
+ scale=vec_stdev_map(fp_random[:, :-5])),
107
+ axis=1)
108
+ ]
109
+
110
+ if insert_port == 1:
111
+ sample_arrays2 = np.c_[
112
+ up_array,
113
+ np.sum(np.random.normal(
114
+ loc=vec_up_projection_map(up_array[:, :-5]),
115
+ scale=vec_up_stdev_map(up_array[:, :-5])),
116
+ axis=1)
117
+ ]
118
+ sample_arrays = np.vstack((sample_arrays1, sample_arrays2))
119
+ else:
120
+ sample_arrays = sample_arrays1
121
+
122
+ final_array = sample_arrays[sample_arrays[:, 9].argsort()[::-1]]
123
+ best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
124
+ Sim_Winners.append(best_lineup)
125
+ SimVar += 1
126
+
127
+ return Sim_Winners
128
+
129
+ def run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs, field_growth):
130
+ RunsVar = 1
131
+ seed_depth_def = seed_depth1
132
+ Strength_var_def = Strength_var
133
+ strength_grow_def = strength_grow
134
+ Teams_used_def = Teams_used
135
+ Total_Runs_def = Total_Runs
136
+
137
+ st.write('Creating Seed Frames')
138
+
139
+ while RunsVar <= seed_depth_def:
140
+ if RunsVar <= 3:
141
+ FieldStrength = Strength_var_def
142
+ FinalPortfolio, maps_dict = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
143
+ FinalPortfolio2, maps_dict2 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
144
+ FinalPortfolio_init = pd.concat([FinalPortfolio, FinalPortfolio2], axis=0)
145
+ maps_dict.update(maps_dict2)
146
+ elif RunsVar > 3 and RunsVar <= 4:
147
+ FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001))
148
+ FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
149
+ FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
150
+ FinalPortfolio_merge_3 = pd.concat([FinalPortfolio_init, FinalPortfolio3], axis=0)
151
+ FinalPortfolio_merge_4 = pd.concat([FinalPortfolio_merge_3, FinalPortfolio4], axis=0)
152
+ FinalPortfolio_step_2 = FinalPortfolio_merge_4.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
153
+ maps_dict.update(maps_dict3)
154
+ maps_dict.update(maps_dict4)
155
+ elif RunsVar > 4:
156
+ FieldStrength = 1
157
+ FinalPortfolio5, maps_dict5 = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
158
+ FinalPortfolio6, maps_dict6 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
159
+ FinalPortfolio_merge_5 = pd.concat([FinalPortfolio_step_2, FinalPortfolio5], axis=0)
160
+ FinalPortfolio_merge_6 = pd.concat([FinalPortfolio_merge_5, FinalPortfolio6], axis=0)
161
+ FinalPortfolio_export = FinalPortfolio_merge_6.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
162
+ maps_dict.update(maps_dict5)
163
+ maps_dict.update(maps_dict6)
164
+ RunsVar += 1
165
+
166
+ return FinalPortfolio_export, maps_dict
167
+
168
+ def create_overall_dfs(pos_players, table_name, dict_name, pos):
169
+ if pos == "UTIL":
170
+ pos_players = pos_players.sort_values(by='Value', ascending=False)
171
+ table_name_raw = pos_players.reset_index(drop=True)
172
+ overall_table_name = table_name_raw.head(round(len(table_name_raw)))
173
+ overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
174
+ overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
175
+ elif pos != "UTIL":
176
+ table_name_raw = pos_players[pos_players['Position'].str.contains(pos)].reset_index(drop=True)
177
+ overall_table_name = table_name_raw.head(round(len(table_name_raw)))
178
+ overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
179
+ overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
180
+
181
+ return overall_table_name, overall_dict_name
182
+
183
+
184
+ def get_overall_merged_df():
185
+ ref_dict = {
186
+ 'pos':['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'],
187
+ 'pos_dfs':['PG_Table', 'SG_Table', 'SF_Table', 'PF_Table', 'C_Table', 'G_Table', 'F_Table', 'UTIL_Table'],
188
+ 'pos_dicts':['pg_dict', 'sg_dict', 'sf_dict', 'pf_dict', 'c_dict', 'g_dict', 'f_dict', 'util_dict']
189
+ }
190
+
191
+ for i in range(0,8):
192
+ ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i] =\
193
+ create_overall_dfs(pos_players, ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i], ref_dict['pos'][i])
194
+
195
+ df_out = pd.concat(ref_dict['pos_dfs'], ignore_index=True)
196
+
197
+ return ref_dict
198
+
199
+ def calculate_range_var(count, min_val, FieldStrength, field_growth):
200
+ var = round(len(count[0]) * FieldStrength)
201
+ var = max(var, min_val)
202
+ var += round(field_growth)
203
+
204
+ return min(var, len(count[0]))
205
+
206
+ def create_random_portfolio(Total_Sample_Size, raw_baselines, field_growth):
207
+
208
+ full_pos_player_dict = get_overall_merged_df()
209
+
210
+ field_growth_rounded = round(field_growth)
211
+ ranges_dict = {}
212
+
213
+ # Calculate ranges
214
+ for df, dict_val, min_val, key in zip(ref_dict['pos_dfs'], ref_dict['pos_dicts'],
215
+ [20, 15, 15, 20, 20, 30, 30, 50], ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']):
216
+ count = create_overall_dfs(pos_players, df, dict_val, key)
217
+ ranges_dict[f"{key.lower()}_range"] = calculate_range_var(count, min_val, FieldStrength, field_growth_rounded)
218
+
219
+ # Generate random portfolios
220
+ rng = np.random.default_rng()
221
+ total_elements = [1, 1, 1, 1, 1, 1, 1, 1]
222
+ keys = ['pg', 'sg', 'sf', 'pf', 'c', 'g', 'f', 'util']
223
+
224
+ all_choices = [rng.choice(ranges_dict[f"{key}_range"], size=(Total_Sample_Size, elem)) for key, elem in zip(keys, total_elements)]
225
+ RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'])
226
+ RandomPortfolio['User/Field'] = 0
227
+
228
+ return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict
229
+
230
+ def get_correlated_portfolio_for_sim(Total_Sample_Size, sharp_split, field_growth):
231
+
232
+ sizesplit = round(Total_Sample_Size * sharp_split)
233
+
234
+ RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines, field_growth)
235
+
236
+ RandomPortfolio['PG'] = pd.Series(list(RandomPortfolio['PG'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
237
+ RandomPortfolio['SG'] = pd.Series(list(RandomPortfolio['SG'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
238
+ RandomPortfolio['SF'] = pd.Series(list(RandomPortfolio['SF'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
239
+ RandomPortfolio['PF'] = pd.Series(list(RandomPortfolio['PF'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
240
+ RandomPortfolio['C'] = pd.Series(list(RandomPortfolio['C'].map(full_pos_player_dict['pos_dicts'][4])), dtype="string[pyarrow]")
241
+ RandomPortfolio['G'] = pd.Series(list(RandomPortfolio['G'].map(full_pos_player_dict['pos_dicts'][5])), dtype="string[pyarrow]")
242
+ RandomPortfolio['F'] = pd.Series(list(RandomPortfolio['F'].map(full_pos_player_dict['pos_dicts'][6])), dtype="string[pyarrow]")
243
+ RandomPortfolio['UTIL'] = pd.Series(list(RandomPortfolio['UTIL'].map(full_pos_player_dict['pos_dicts'][7])), dtype="string[pyarrow]")
244
+ RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
245
+ RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
246
+ RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 9].drop(columns=['plyr_list','plyr_count']).\
247
+ reset_index(drop=True)
248
+
249
+ RandomPortfolio['PGs'] = RandomPortfolio['PG'].map(maps_dict['Salary_map']).astype(np.int32)
250
+ RandomPortfolio['SGs'] = RandomPortfolio['SG'].map(maps_dict['Salary_map']).astype(np.int32)
251
+ RandomPortfolio['SFs'] = RandomPortfolio['SF'].map(maps_dict['Salary_map']).astype(np.int32)
252
+ RandomPortfolio['PFs'] = RandomPortfolio['PF'].map(maps_dict['Salary_map']).astype(np.int32)
253
+ RandomPortfolio['Cs'] = RandomPortfolio['C'].map(maps_dict['Salary_map']).astype(np.int32)
254
+ RandomPortfolio['Gs'] = RandomPortfolio['G'].map(maps_dict['Salary_map']).astype(np.int32)
255
+ RandomPortfolio['Fs'] = RandomPortfolio['F'].map(maps_dict['Salary_map']).astype(np.int32)
256
+ RandomPortfolio['UTILs'] = RandomPortfolio['UTIL'].map(maps_dict['Salary_map']).astype(np.int32)
257
+
258
+ RandomPortfolio['PGp'] = RandomPortfolio['PG'].map(maps_dict['Projection_map']).astype(np.float16)
259
+ RandomPortfolio['SGp'] = RandomPortfolio['SG'].map(maps_dict['Projection_map']).astype(np.float16)
260
+ RandomPortfolio['SFp'] = RandomPortfolio['SF'].map(maps_dict['Projection_map']).astype(np.float16)
261
+ RandomPortfolio['PFp'] = RandomPortfolio['PF'].map(maps_dict['Projection_map']).astype(np.float16)
262
+ RandomPortfolio['Cp'] = RandomPortfolio['C'].map(maps_dict['Projection_map']).astype(np.float16)
263
+ RandomPortfolio['Gp'] = RandomPortfolio['G'].map(maps_dict['Projection_map']).astype(np.float16)
264
+ RandomPortfolio['Fp'] = RandomPortfolio['F'].map(maps_dict['Projection_map']).astype(np.float16)
265
+ RandomPortfolio['UTILp'] = RandomPortfolio['UTIL'].map(maps_dict['Projection_map']).astype(np.float16)
266
+
267
+ RandomPortfolio['PGo'] = RandomPortfolio['PG'].map(maps_dict['Own_map']).astype(np.float16)
268
+ RandomPortfolio['SGo'] = RandomPortfolio['SG'].map(maps_dict['Own_map']).astype(np.float16)
269
+ RandomPortfolio['SFo'] = RandomPortfolio['SF'].map(maps_dict['Own_map']).astype(np.float16)
270
+ RandomPortfolio['PFo'] = RandomPortfolio['PF'].map(maps_dict['Own_map']).astype(np.float16)
271
+ RandomPortfolio['Co'] = RandomPortfolio['C'].map(maps_dict['Own_map']).astype(np.float16)
272
+ RandomPortfolio['Go'] = RandomPortfolio['G'].map(maps_dict['Own_map']).astype(np.float16)
273
+ RandomPortfolio['Fo'] = RandomPortfolio['F'].map(maps_dict['Own_map']).astype(np.float16)
274
+ RandomPortfolio['UTILo'] = RandomPortfolio['UTIL'].map(maps_dict['Own_map']).astype(np.float16)
275
+
276
+ RandomPortArray = RandomPortfolio.to_numpy()
277
+
278
+ RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,9:17].astype(int))]
279
+ RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,17:25].astype(np.double))]
280
+ RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,25:33].astype(np.double))]
281
+
282
+ RandomPortArrayOut = np.delete(RandomPortArray, np.s_[9:33], axis=1)
283
+ RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'User/Field', 'Salary', 'Projection', 'Own'])
284
+ RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
285
+
286
+ if insert_port == 1:
287
+ CleanPortfolio['Salary'] = sum([CleanPortfolio['PG'].map(maps_dict['Salary_map']),
288
+ CleanPortfolio['SG'].map(maps_dict['Salary_map']),
289
+ CleanPortfolio['SF'].map(maps_dict['Salary_map']),
290
+ CleanPortfolio['PF'].map(maps_dict['Salary_map']),
291
+ CleanPortfolio['C'].map(maps_dict['Salary_map']),
292
+ CleanPortfolio['G'].map(maps_dict['Salary_map']),
293
+ CleanPortfolio['F'].map(maps_dict['Salary_map']),
294
+ CleanPortfolio['UTIL'].map(maps_dict['Salary_map'])
295
+ ]).astype(np.int16)
296
+ if insert_port == 1:
297
+ CleanPortfolio['Projection'] = sum([CleanPortfolio['PG'].map(maps_dict['Projection_map']),
298
+ CleanPortfolio['SG'].map(maps_dict['Projection_map']),
299
+ CleanPortfolio['SF'].map(maps_dict['Projection_map']),
300
+ CleanPortfolio['PF'].map(maps_dict['Projection_map']),
301
+ CleanPortfolio['C'].map(maps_dict['Projection_map']),
302
+ CleanPortfolio['G'].map(maps_dict['Projection_map']),
303
+ CleanPortfolio['F'].map(maps_dict['Projection_map']),
304
+ CleanPortfolio['UTIL'].map(maps_dict['Projection_map'])
305
+ ]).astype(np.float16)
306
+ if insert_port == 1:
307
+ CleanPortfolio['Own'] = sum([CleanPortfolio['PG'].map(maps_dict['Own_map']),
308
+ CleanPortfolio['SG'].map(maps_dict['Own_map']),
309
+ CleanPortfolio['SF'].map(maps_dict['Own_map']),
310
+ CleanPortfolio['PF'].map(maps_dict['Own_map']),
311
+ CleanPortfolio['C'].map(maps_dict['Own_map']),
312
+ CleanPortfolio['G'].map(maps_dict['Own_map']),
313
+ CleanPortfolio['F'].map(maps_dict['Own_map']),
314
+ CleanPortfolio['UTIL'].map(maps_dict['Own_map'])
315
+ ]).astype(np.float16)
316
+
317
+ if site_var1 == 'Draftkings':
318
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
319
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (49500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
320
+ elif site_var1 == 'Fanduel':
321
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True)
322
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (59500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
323
+
324
+ RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
325
+
326
+ RandomPortfolio = RandomPortfolio[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'User/Field', 'Salary', 'Projection', 'Own']]
327
+
328
+ return RandomPortfolio, maps_dict
329
+
330
+ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size, sharp_split, field_growth):
331
+
332
+ sizesplit = round(Total_Sample_Size * sharp_split)
333
+
334
+ RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines, field_growth)
335
+
336
+ RandomPortfolio['PG'] = pd.Series(list(RandomPortfolio['PG'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
337
+ RandomPortfolio['SG'] = pd.Series(list(RandomPortfolio['SG'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
338
+ RandomPortfolio['SF'] = pd.Series(list(RandomPortfolio['SF'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
339
+ RandomPortfolio['PF'] = pd.Series(list(RandomPortfolio['PF'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
340
+ RandomPortfolio['C'] = pd.Series(list(RandomPortfolio['C'].map(full_pos_player_dict['pos_dicts'][4])), dtype="string[pyarrow]")
341
+ RandomPortfolio['G'] = pd.Series(list(RandomPortfolio['G'].map(full_pos_player_dict['pos_dicts'][5])), dtype="string[pyarrow]")
342
+ RandomPortfolio['F'] = pd.Series(list(RandomPortfolio['F'].map(full_pos_player_dict['pos_dicts'][6])), dtype="string[pyarrow]")
343
+ RandomPortfolio['UTIL'] = pd.Series(list(RandomPortfolio['UTIL'].map(full_pos_player_dict['pos_dicts'][7])), dtype="string[pyarrow]")
344
+ RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
345
+ RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
346
+ RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 9].drop(columns=['plyr_list','plyr_count']).\
347
+ reset_index(drop=True)
348
+
349
+ RandomPortfolio['PGs'] = RandomPortfolio['PG'].map(maps_dict['Salary_map']).astype(np.int32)
350
+ RandomPortfolio['SGs'] = RandomPortfolio['SG'].map(maps_dict['Salary_map']).astype(np.int32)
351
+ RandomPortfolio['SFs'] = RandomPortfolio['SF'].map(maps_dict['Salary_map']).astype(np.int32)
352
+ RandomPortfolio['PFs'] = RandomPortfolio['PF'].map(maps_dict['Salary_map']).astype(np.int32)
353
+ RandomPortfolio['Cs'] = RandomPortfolio['C'].map(maps_dict['Salary_map']).astype(np.int32)
354
+ RandomPortfolio['Gs'] = RandomPortfolio['G'].map(maps_dict['Salary_map']).astype(np.int32)
355
+ RandomPortfolio['Fs'] = RandomPortfolio['F'].map(maps_dict['Salary_map']).astype(np.int32)
356
+ RandomPortfolio['UTILs'] = RandomPortfolio['UTIL'].map(maps_dict['Salary_map']).astype(np.int32)
357
+
358
+ RandomPortfolio['PGp'] = RandomPortfolio['PG'].map(maps_dict['Projection_map']).astype(np.float16)
359
+ RandomPortfolio['SGp'] = RandomPortfolio['SG'].map(maps_dict['Projection_map']).astype(np.float16)
360
+ RandomPortfolio['SFp'] = RandomPortfolio['SF'].map(maps_dict['Projection_map']).astype(np.float16)
361
+ RandomPortfolio['PFp'] = RandomPortfolio['PF'].map(maps_dict['Projection_map']).astype(np.float16)
362
+ RandomPortfolio['Cp'] = RandomPortfolio['C'].map(maps_dict['Projection_map']).astype(np.float16)
363
+ RandomPortfolio['Gp'] = RandomPortfolio['G'].map(maps_dict['Projection_map']).astype(np.float16)
364
+ RandomPortfolio['Fp'] = RandomPortfolio['F'].map(maps_dict['Projection_map']).astype(np.float16)
365
+ RandomPortfolio['UTILp'] = RandomPortfolio['UTIL'].map(maps_dict['Projection_map']).astype(np.float16)
366
+
367
+ RandomPortfolio['PGo'] = RandomPortfolio['PG'].map(maps_dict['Own_map']).astype(np.float16)
368
+ RandomPortfolio['SGo'] = RandomPortfolio['SG'].map(maps_dict['Own_map']).astype(np.float16)
369
+ RandomPortfolio['SFo'] = RandomPortfolio['SF'].map(maps_dict['Own_map']).astype(np.float16)
370
+ RandomPortfolio['PFo'] = RandomPortfolio['PF'].map(maps_dict['Own_map']).astype(np.float16)
371
+ RandomPortfolio['Co'] = RandomPortfolio['C'].map(maps_dict['Own_map']).astype(np.float16)
372
+ RandomPortfolio['Go'] = RandomPortfolio['G'].map(maps_dict['Own_map']).astype(np.float16)
373
+ RandomPortfolio['Fo'] = RandomPortfolio['F'].map(maps_dict['Own_map']).astype(np.float16)
374
+ RandomPortfolio['UTILo'] = RandomPortfolio['UTIL'].map(maps_dict['Own_map']).astype(np.float16)
375
+
376
+ RandomPortArray = RandomPortfolio.to_numpy()
377
+
378
+ RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,9:17].astype(int))]
379
+ RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,17:25].astype(np.double))]
380
+ RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,25:33].astype(np.double))]
381
+
382
+ RandomPortArrayOut = np.delete(RandomPortArray, np.s_[9:33], axis=1)
383
+ RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'User/Field', 'Salary', 'Projection', 'Own'])
384
+ RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
385
+
386
+ if insert_port == 1:
387
+ CleanPortfolio['Salary'] = sum([CleanPortfolio['PG'].map(maps_dict['Salary_map']),
388
+ CleanPortfolio['SG'].map(maps_dict['Salary_map']),
389
+ CleanPortfolio['SF'].map(maps_dict['Salary_map']),
390
+ CleanPortfolio['PF'].map(maps_dict['Salary_map']),
391
+ CleanPortfolio['C'].map(maps_dict['Salary_map']),
392
+ CleanPortfolio['G'].map(maps_dict['Salary_map']),
393
+ CleanPortfolio['F'].map(maps_dict['Salary_map']),
394
+ CleanPortfolio['UTIL'].map(maps_dict['Salary_map'])
395
+ ]).astype(np.int16)
396
+ if insert_port == 1:
397
+ CleanPortfolio['Projection'] = sum([CleanPortfolio['PG'].map(maps_dict['Projection_map']),
398
+ CleanPortfolio['SG'].map(maps_dict['Projection_map']),
399
+ CleanPortfolio['SF'].map(maps_dict['Projection_map']),
400
+ CleanPortfolio['PF'].map(maps_dict['Projection_map']),
401
+ CleanPortfolio['C'].map(maps_dict['Projection_map']),
402
+ CleanPortfolio['G'].map(maps_dict['Projection_map']),
403
+ CleanPortfolio['F'].map(maps_dict['Projection_map']),
404
+ CleanPortfolio['UTIL'].map(maps_dict['Projection_map'])
405
+ ]).astype(np.float16)
406
+ if insert_port == 1:
407
+ CleanPortfolio['Own'] = sum([CleanPortfolio['PG'].map(maps_dict['Own_map']),
408
+ CleanPortfolio['SG'].map(maps_dict['Own_map']),
409
+ CleanPortfolio['SF'].map(maps_dict['Own_map']),
410
+ CleanPortfolio['PF'].map(maps_dict['Own_map']),
411
+ CleanPortfolio['C'].map(maps_dict['Own_map']),
412
+ CleanPortfolio['G'].map(maps_dict['Own_map']),
413
+ CleanPortfolio['F'].map(maps_dict['Own_map']),
414
+ CleanPortfolio['UTIL'].map(maps_dict['Own_map'])
415
+ ]).astype(np.float16)
416
+
417
+ if site_var1 == 'Draftkings':
418
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
419
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (49500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
420
+ elif site_var1 == 'Fanduel':
421
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True)
422
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (59500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
423
+
424
+ RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
425
+
426
+ RandomPortfolio = RandomPortfolio[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'User/Field', 'Salary', 'Projection', 'Own']]
427
+
428
+ return RandomPortfolio, maps_dict
429
+
430
+ tab1, tab2 = st.tabs(['Uploads', 'Contest Sim'])
431
+
432
+ with tab1:
433
+ with st.container():
434
+ col1, col2 = st.columns([3, 3])
435
+
436
+ with col1:
437
+ st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'. Upload your projections first to avoid an error message.")
438
+ proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
439
+
440
+ if proj_file is not None:
441
+ try:
442
+ proj_dataframe = pd.read_csv(proj_file)
443
+ proj_dataframe = proj_dataframe.dropna(subset='Median')
444
+ proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
445
+ try:
446
+ proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
447
+ except:
448
+ pass
449
+
450
+ except:
451
+ proj_dataframe = pd.read_excel(proj_file)
452
+ proj_dataframe = proj_dataframe.dropna(subset='Median')
453
+ proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
454
+ try:
455
+ proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
456
+ except:
457
+ pass
458
+ st.table(proj_dataframe.head(10))
459
+ player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
460
+ player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
461
+ player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
462
+
463
+ with col2:
464
+ st.info("The Portfolio file must contain only columns in order and explicitly named: 'PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', and 'UTIL'. Upload your projections first to avoid an error message.")
465
+ portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')
466
+
467
+ if portfolio_file is not None:
468
+ try:
469
+ portfolio_dataframe = pd.read_csv(portfolio_file)
470
+
471
+ except:
472
+ portfolio_dataframe = pd.read_excel(portfolio_file)
473
+
474
+ try:
475
+ try:
476
+ portfolio_dataframe.columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
477
+ split_portfolio = portfolio_dataframe
478
+ split_portfolio[['PG', 'PG_ID']] = split_portfolio.PG.str.split("(", n=1, expand = True)
479
+ split_portfolio[['SG', 'SG_ID']] = split_portfolio.SG.str.split("(", n=1, expand = True)
480
+ split_portfolio[['SF', 'SF_ID']] = split_portfolio.SF.str.split("(", n=1, expand = True)
481
+ split_portfolio[['PF', 'PF_ID']] = split_portfolio.PF.str.split("(", n=1, expand = True)
482
+ split_portfolio[['C', 'C_ID']] = split_portfolio.C.str.split("(", n=1, expand = True)
483
+ split_portfolio[['G', 'G_ID']] = split_portfolio.G.str.split("(", n=1, expand = True)
484
+ split_portfolio[['F', 'F_ID']] = split_portfolio.F.str.split("(", n=1, expand = True)
485
+ split_portfolio[['UTIL', 'UTIL_ID']] = split_portfolio.UTIL.str.split("(", n=1, expand = True)
486
+
487
+ split_portfolio['PG'] = split_portfolio['PG'].str.strip()
488
+ split_portfolio['SG'] = split_portfolio['SG'].str.strip()
489
+ split_portfolio['SF'] = split_portfolio['SF'].str.strip()
490
+ split_portfolio['PF'] = split_portfolio['PF'].str.strip()
491
+ split_portfolio['C'] = split_portfolio['C'].str.strip()
492
+ split_portfolio['G'] = split_portfolio['G'].str.strip()
493
+ split_portfolio['F'] = split_portfolio['F'].str.strip()
494
+ split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
495
+
496
+ split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
497
+ split_portfolio['SG'].map(player_salary_dict),
498
+ split_portfolio['SF'].map(player_salary_dict),
499
+ split_portfolio['PF'].map(player_salary_dict),
500
+ split_portfolio['C'].map(player_salary_dict),
501
+ split_portfolio['G'].map(player_salary_dict),
502
+ split_portfolio['F'].map(player_salary_dict),
503
+ split_portfolio['UTIL'].map(player_salary_dict)])
504
+
505
+ split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
506
+ split_portfolio['SG'].map(player_proj_dict),
507
+ split_portfolio['SF'].map(player_proj_dict),
508
+ split_portfolio['PF'].map(player_proj_dict),
509
+ split_portfolio['C'].map(player_proj_dict),
510
+ split_portfolio['G'].map(player_proj_dict),
511
+ split_portfolio['F'].map(player_proj_dict),
512
+ split_portfolio['UTIL'].map(player_proj_dict)])
513
+
514
+ split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
515
+ split_portfolio['SG'].map(player_own_dict),
516
+ split_portfolio['SF'].map(player_own_dict),
517
+ split_portfolio['PF'].map(player_own_dict),
518
+ split_portfolio['C'].map(player_own_dict),
519
+ split_portfolio['G'].map(player_own_dict),
520
+ split_portfolio['F'].map(player_own_dict),
521
+ split_portfolio['UTIL'].map(player_own_dict)])
522
+
523
+ st.table(split_portfolio.head(10))
524
+
525
+
526
+ except:
527
+ portfolio_dataframe.columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
528
+
529
+ split_portfolio = portfolio_dataframe
530
+ split_portfolio[['PG_ID', 'PG']] = split_portfolio.PG.str.split(":", n=1, expand = True)
531
+ split_portfolio[['SG_ID', 'SG']] = split_portfolio.SG.str.split(":", n=1, expand = True)
532
+ split_portfolio[['SF_ID', 'SF']] = split_portfolio.SF.str.split(":", n=1, expand = True)
533
+ split_portfolio[['PF_ID', 'PF']] = split_portfolio.PF.str.split(":", n=1, expand = True)
534
+ split_portfolio[['C_ID', 'C']] = split_portfolio.C.str.split(":", n=1, expand = True)
535
+ split_portfolio[['G_ID', 'G']] = split_portfolio.G.str.split(":", n=1, expand = True)
536
+ split_portfolio[['F_ID', 'F']] = split_portfolio.F.str.split(":", n=1, expand = True)
537
+ split_portfolio[['UTIL_ID', 'UTIL']] = split_portfolio.UTIL.str.split(":", n=1, expand = True)
538
+
539
+ split_portfolio['PG'] = split_portfolio['PG'].str.strip()
540
+ split_portfolio['SG'] = split_portfolio['SG'].str.strip()
541
+ split_portfolio['SF'] = split_portfolio['SF'].str.strip()
542
+ split_portfolio['PF'] = split_portfolio['PF'].str.strip()
543
+ split_portfolio['C'] = split_portfolio['C'].str.strip()
544
+ split_portfolio['G'] = split_portfolio['G'].str.strip()
545
+ split_portfolio['F'] = split_portfolio['F'].str.strip()
546
+ split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
547
+
548
+ split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
549
+ split_portfolio['SG'].map(player_salary_dict),
550
+ split_portfolio['SF'].map(player_salary_dict),
551
+ split_portfolio['PF'].map(player_salary_dict),
552
+ split_portfolio['C'].map(player_salary_dict),
553
+ split_portfolio['G'].map(player_salary_dict),
554
+ split_portfolio['F'].map(player_salary_dict),
555
+ split_portfolio['UTIL'].map(player_salary_dict)])
556
+
557
+ split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
558
+ split_portfolio['SG'].map(player_proj_dict),
559
+ split_portfolio['SF'].map(player_proj_dict),
560
+ split_portfolio['PF'].map(player_proj_dict),
561
+ split_portfolio['C'].map(player_proj_dict),
562
+ split_portfolio['G'].map(player_proj_dict),
563
+ split_portfolio['F'].map(player_proj_dict),
564
+ split_portfolio['UTIL'].map(player_proj_dict)])
565
+
566
+
567
+ split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
568
+ split_portfolio['SG'].map(player_own_dict),
569
+ split_portfolio['SF'].map(player_own_dict),
570
+ split_portfolio['PF'].map(player_own_dict),
571
+ split_portfolio['C'].map(player_own_dict),
572
+ split_portfolio['G'].map(player_own_dict),
573
+ split_portfolio['F'].map(player_own_dict),
574
+ split_portfolio['UTIL'].map(player_own_dict)])
575
+
576
+ st.table(split_portfolio.head(10))
577
+
578
+ except:
579
+ split_portfolio = portfolio_dataframe
580
+
581
+ split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
582
+ split_portfolio['SG'].map(player_salary_dict),
583
+ split_portfolio['SF'].map(player_salary_dict),
584
+ split_portfolio['PF'].map(player_salary_dict),
585
+ split_portfolio['C'].map(player_salary_dict),
586
+ split_portfolio['G'].map(player_salary_dict),
587
+ split_portfolio['F'].map(player_salary_dict),
588
+ split_portfolio['UTIL'].map(player_salary_dict)])
589
+
590
+ split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
591
+ split_portfolio['SG'].map(player_proj_dict),
592
+ split_portfolio['SF'].map(player_proj_dict),
593
+ split_portfolio['PF'].map(player_proj_dict),
594
+ split_portfolio['C'].map(player_proj_dict),
595
+ split_portfolio['G'].map(player_proj_dict),
596
+ split_portfolio['F'].map(player_proj_dict),
597
+ split_portfolio['UTIL'].map(player_proj_dict)])
598
+
599
+
600
+ split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
601
+ split_portfolio['SG'].map(player_own_dict),
602
+ split_portfolio['SF'].map(player_own_dict),
603
+ split_portfolio['PF'].map(player_own_dict),
604
+ split_portfolio['C'].map(player_own_dict),
605
+ split_portfolio['G'].map(player_own_dict),
606
+ split_portfolio['F'].map(player_own_dict),
607
+ split_portfolio['UTIL'].map(player_own_dict)])
608
+
609
+ gc.collect()
610
+
611
+ with tab2:
612
+ col1, col2 = st.columns([1, 7])
613
+ with col1:
614
+ st.info(t_stamp)
615
+ if st.button("Load/Reset Data", key='reset1'):
616
+ st.cache_data.clear()
617
+ for key in st.session_state.keys():
618
+ del st.session_state[key]
619
+ dk_roo_raw, fd_roo_raw, dkid_dict, fdid_dict = init_baslines()
620
+ t_stamp = f"Last Update: " + "idk man recently probably" + f" CST"
621
+
622
+ slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'User'))
623
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
624
+ if site_var1 == 'Draftkings':
625
+ if slate_var1 == 'User':
626
+ raw_baselines = proj_dataframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
627
+ elif slate_var1 != 'User':
628
+ raw_baselines = dk_roo_raw
629
+ elif site_var1 == 'Fanduel':
630
+ if slate_var1 == 'User':
631
+ raw_baselines = proj_dataframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
632
+ elif slate_var1 != 'User':
633
+ raw_baselines = fd_roo_raw
634
+
635
+ st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation")
636
+ insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes'), key='insert_port1')
637
+ if insert_port1 == 'Yes':
638
+ insert_port = 1
639
+ elif insert_port1 == 'No':
640
+ insert_port = 0
641
+ contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large'))
642
+ if contest_var1 == 'Small':
643
+ Contest_Size = 500
644
+ elif contest_var1 == 'Medium':
645
+ Contest_Size = 2500
646
+ elif contest_var1 == 'Large':
647
+ Contest_Size = 5000
648
+ strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
649
+ if strength_var1 == 'Not Very':
650
+ sharp_split = .33
651
+ Strength_var = .50
652
+ scaling_var = 5
653
+ elif strength_var1 == 'Average':
654
+ sharp_split = .50
655
+ Strength_var = .25
656
+ scaling_var = 10
657
+ elif strength_var1 == 'Very':
658
+ sharp_split = .75
659
+ Strength_var = .01
660
+ scaling_var = 15
661
+
662
+ Sort_function = 'Median'
663
+ Sim_function = 'Projection'
664
+
665
+ if Contest_Size <= 1000:
666
+ strength_grow = .01
667
+ elif Contest_Size > 1000 and Contest_Size <= 2500:
668
+ strength_grow = .025
669
+ elif Contest_Size > 2500 and Contest_Size <= 5000:
670
+ strength_grow = .05
671
+ elif Contest_Size > 5000 and Contest_Size <= 20000:
672
+ strength_grow = .075
673
+ elif Contest_Size > 20000:
674
+ strength_grow = .1
675
+
676
+ field_growth = 100 * strength_grow
677
+
678
+ with col2:
679
+ with st.container():
680
+ if st.button("Simulate Contest"):
681
+ with st.container():
682
+ for key in st.session_state.keys():
683
+ del st.session_state[key]
684
+
685
+ if slate_var1 == 'User':
686
+ initial_proj = proj_dataframe[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
687
+
688
+ # # Define the calculation to be applied
689
+ # def calculate_own(position, own, mean_own, factor, max_own=85):
690
+ # return np.where((position == 'C') & (own - mean_own >= 0),
691
+ # own * (factor * (own - mean_own) / 100) + mean_own,
692
+ # own)
693
+
694
+ # # Set the factors based on the contest_var1
695
+ # factor_c, factor_other = {
696
+ # 'Small': (10, 5),
697
+ # 'Medium': (6, 3),
698
+ # 'Large': (3, 1.5),
699
+ # }[contest_var1]
700
+
701
+ # # Apply the calculation to the DataFrame
702
+ # initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_c if row['Position'] == 'C' else factor_other), axis=1)
703
+ # initial_proj['Own%'] = initial_proj['Own%'].clip(upper=85)
704
+ initial_proj['Own'] = initial_proj['Own%'] * (900 / initial_proj['Own%'].sum())
705
+
706
+ # Drop unnecessary columns and create the final DataFrame
707
+ Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
708
+
709
+ elif slate_var1 != 'User':
710
+ # Copy only the necessary columns
711
+ initial_proj = raw_baselines[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
712
+
713
+ # # Define the calculation to be applied
714
+ # def calculate_own(position, own, mean_own, factor, max_own=85):
715
+ # return np.where((position == 'C') & (own - mean_own >= 0),
716
+ # own * (factor * (own - mean_own) / 100) + mean_own,
717
+ # own)
718
+
719
+ # # Set the factors based on the contest_var1
720
+ # factor_c, factor_other = {
721
+ # 'Small': (10, 5),
722
+ # 'Medium': (6, 3),
723
+ # 'Large': (3, 1.5),
724
+ # }[contest_var1]
725
+
726
+ # # Apply the calculation to the DataFrame
727
+ # initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_c if row['Position'] == 'C' else factor_other), axis=1)
728
+ # initial_proj['Own%'] = initial_proj['Own%'].clip(upper=85)
729
+ initial_proj['Own'] = initial_proj['Own'] * (900 / initial_proj['Own'].sum())
730
+
731
+ # Drop unnecessary columns and create the final DataFrame
732
+ Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
733
+
734
+ if insert_port == 1:
735
+ UserPortfolio = portfolio_dataframe[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']]
736
+ elif insert_port == 0:
737
+ UserPortfolio = pd.DataFrame(columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'])
738
+
739
+ Overall_Proj.replace('', np.nan, inplace=True)
740
+ Overall_Proj = Overall_Proj.dropna(subset=['Median'])
741
+ Overall_Proj = Overall_Proj.assign(Value=lambda x: (x.Median / (x.Salary / 1000)))
742
+ Overall_Proj['Sort_var'] = (Overall_Proj['Median'].rank(ascending=False) + Overall_Proj['Value'].rank(ascending=False)) / 2
743
+ Overall_Proj = Overall_Proj.sort_values(by='Sort_var', ascending=False)
744
+ Overall_Proj['Own'] = np.where((Overall_Proj['Median'] > 0) & (Overall_Proj['Own'] == 0), 1, Overall_Proj['Own'])
745
+ Overall_Proj = Overall_Proj.loc[Overall_Proj['Own'] > 0]
746
+
747
+ Overall_Proj['Floor'] = Overall_Proj['Median'] * .25
748
+ Overall_Proj['Ceiling'] = Overall_Proj['Median'] * 1.75
749
+ Overall_Proj['STDev'] = Overall_Proj['Median'] / 4
750
+
751
+ Teams_used = Overall_Proj['Team'].drop_duplicates().reset_index(drop=True)
752
+ Teams_used = Teams_used.reset_index()
753
+ Teams_used['team_item'] = Teams_used['index'] + 1
754
+ Teams_used = Teams_used.drop(columns=['index'])
755
+ Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
756
+
757
+ team_list = Teams_used['Team'].to_list()
758
+ item_list = Teams_used['team_item'].to_list()
759
+
760
+ FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01)
761
+ FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size))
762
+
763
+ if FieldStrength < 0:
764
+ FieldStrength = Strength_var
765
+ field_split = Strength_var
766
+
767
+ for checkVar in range(len(team_list)):
768
+ Overall_Proj['Team'] = Overall_Proj['Team'].replace(team_list, item_list)
769
+
770
+ pgs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('PG')]
771
+ pgs_raw.dropna(subset=['Median']).reset_index(drop=True)
772
+ pgs_raw = pgs_raw.reset_index(drop=True)
773
+ pgs_raw = pgs_raw.sort_values(by=['Median'], ascending=False)
774
+
775
+ sgs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('SG')]
776
+ sgs_raw.dropna(subset=['Median']).reset_index(drop=True)
777
+ sgs_raw = sgs_raw.reset_index(drop=True)
778
+ sgs_raw = sgs_raw.sort_values(by=['Own', 'Value'], ascending=False)
779
+
780
+ sfs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('SF')]
781
+ sfs_raw.dropna(subset=['Median']).reset_index(drop=True)
782
+ sfs_raw = sfs_raw.reset_index(drop=True)
783
+ sfs_raw = sfs_raw.sort_values(by=['Own', 'Value'], ascending=False)
784
+
785
+ pfs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('PF')]
786
+ pfs_raw.dropna(subset=['Median']).reset_index(drop=True)
787
+ pfs_raw = pfs_raw.reset_index(drop=True)
788
+ pfs_raw = pfs_raw.sort_values(by=['Own', 'Median'], ascending=False)
789
+
790
+ cs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('C')]
791
+ cs_raw.dropna(subset=['Median']).reset_index(drop=True)
792
+ cs_raw = cs_raw.reset_index(drop=True)
793
+ cs_raw = cs_raw.sort_values(by=['Own', 'Median'], ascending=False)
794
+
795
+ gs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('G')]
796
+ gs_raw.dropna(subset=['Median']).reset_index(drop=True)
797
+ gs_raw = gs_raw.reset_index(drop=True)
798
+ gs_raw = gs_raw.sort_values(by=['Own', 'Value'], ascending=False)
799
+
800
+ fs_raw = Overall_Proj[Overall_Proj['Position'].str.contains('F')]
801
+ fs_raw.dropna(subset=['Median']).reset_index(drop=True)
802
+ fs_raw = fs_raw.reset_index(drop=True)
803
+ fs_raw = fs_raw.sort_values(by=['Own', 'Value'], ascending=False)
804
+
805
+ pos_players = pd.concat([pgs_raw, sgs_raw, sfs_raw, pfs_raw, cs_raw, gs_raw, fs_raw])
806
+ pos_players.dropna(subset=['Median']).reset_index(drop=True)
807
+ pos_players = pos_players.reset_index(drop=True)
808
+
809
+ if insert_port == 1:
810
+ try:
811
+ # Initialize an empty DataFrame for Raw Portfolio
812
+ Raw_Portfolio = pd.DataFrame()
813
+
814
+ # Loop through each position and split the data accordingly
815
+ positions = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
816
+ for pos in positions:
817
+ temp_df = UserPortfolio[pos].str.split("(", n=1, expand=True)
818
+ temp_df.columns = [pos, 'Drop']
819
+ Raw_Portfolio = pd.concat([Raw_Portfolio, temp_df], axis=1)
820
+
821
+ # Select only necessary columns and strip white spaces
822
+ CleanPortfolio = Raw_Portfolio[positions].apply(lambda x: x.str.strip())
823
+ CleanPortfolio.reset_index(inplace=True)
824
+ CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
825
+ CleanPortfolio.drop(columns=['index'], inplace=True)
826
+
827
+ CleanPortfolio.replace('', np.nan, inplace=True)
828
+ CleanPortfolio.dropna(subset=['PG'], inplace=True)
829
+
830
+ # Create frequency table for players
831
+ cleaport_players = pd.DataFrame(
832
+ np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
833
+ columns=['Player', 'Freq']
834
+ ).sort_values('Freq', ascending=False).reset_index(drop=True)
835
+ cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
836
+
837
+ # Merge and update nerf_frame
838
+ nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
839
+ for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
840
+ nerf_frame[col] *= 0.90
841
+ except:
842
+ CleanPortfolio = UserPortfolio.reset_index()
843
+ CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
844
+ CleanPortfolio.drop(columns=['index'], inplace=True)
845
+
846
+ CleanPortfolio.replace('', np.nan, inplace=True)
847
+ CleanPortfolio.dropna(subset=['PG'], inplace=True)
848
+
849
+ # Create frequency table for players
850
+ cleaport_players = pd.DataFrame(
851
+ np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
852
+ columns=['Player', 'Freq']
853
+ ).sort_values('Freq', ascending=False).reset_index(drop=True)
854
+ cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
855
+
856
+ # Merge and update nerf_frame
857
+ nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
858
+ for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
859
+ nerf_frame[col] *= 0.90
860
+
861
+ elif insert_port == 0:
862
+ CleanPortfolio = UserPortfolio
863
+ cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:9].values, return_counts=True)),
864
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
865
+ cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
866
+ nerf_frame = Overall_Proj
867
+
868
+ ref_dict = {
869
+ 'pos':['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'],
870
+ 'pos_dfs':['PG_Table', 'SG_Table', 'SF_Table', 'PF_Table', 'C_Table', 'G_Table', 'F_Table', 'UTIL_Table'],
871
+ 'pos_dicts':['pg_dict', 'sg_dict', 'sf_dict', 'pf_dict', 'c_dict', 'g_dict', 'f_dict', 'util_dict']
872
+ }
873
+
874
+ maps_dict = {
875
+ 'Floor_map':dict(zip(Overall_Proj.Player,Overall_Proj.Floor)),
876
+ 'Projection_map':dict(zip(Overall_Proj.Player,Overall_Proj.Median)),
877
+ 'Ceiling_map':dict(zip(Overall_Proj.Player,Overall_Proj.Ceiling)),
878
+ 'Salary_map':dict(zip(Overall_Proj.Player,Overall_Proj.Salary)),
879
+ 'Pos_map':dict(zip(Overall_Proj.Player,Overall_Proj.Position)),
880
+ 'Own_map':dict(zip(Overall_Proj.Player,Overall_Proj.Own)),
881
+ 'Team_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team)),
882
+ 'STDev_map':dict(zip(Overall_Proj.Player,Overall_Proj.STDev)),
883
+ 'team_check_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team))
884
+ }
885
+
886
+ up_dict = {
887
+ 'Floor_map':dict(zip(cleaport_players.Player,nerf_frame.Floor)),
888
+ 'Projection_map':dict(zip(cleaport_players.Player,nerf_frame.Median)),
889
+ 'Ceiling_map':dict(zip(cleaport_players.Player,nerf_frame.Ceiling)),
890
+ 'Salary_map':dict(zip(cleaport_players.Player,nerf_frame.Salary)),
891
+ 'Pos_map':dict(zip(cleaport_players.Player,nerf_frame.Position)),
892
+ 'Own_map':dict(zip(cleaport_players.Player,nerf_frame.Own)),
893
+ 'Team_map':dict(zip(cleaport_players.Player,nerf_frame.Team)),
894
+ 'STDev_map':dict(zip(cleaport_players.Player,nerf_frame.STDev)),
895
+ 'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
896
+ }
897
+
898
+ FinalPortfolio, maps_dict = run_seed_frame(5, Strength_var, strength_grow, Teams_used, 1000000, field_growth)
899
+
900
+ Sim_Winners = sim_contest(2500, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port)
901
+
902
+ # Initial setup
903
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
904
+ Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
905
+ Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['Projection'].astype(str) + Sim_Winner_Frame['Salary'].astype(str) + Sim_Winner_Frame['Own'].astype(str)
906
+ Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
907
+
908
+ # Type Casting
909
+ type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32}
910
+ Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
911
+
912
+ del FinalPortfolio, insert_port, type_cast_dict
913
+
914
+ # Sorting
915
+ st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
916
+ st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
917
+
918
+ # Data Copying
919
+ st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
920
+
921
+ # Data Copying
922
+ st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
923
+
924
+ # Conditional Replacement
925
+ columns_to_replace = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
926
+
927
+ if site_var1 == 'Draftkings':
928
+ replace_dict = dkid_dict
929
+ elif site_var1 == 'Fanduel':
930
+ replace_dict = fdid_dict
931
+
932
+ for col in columns_to_replace:
933
+ st.session_state.Sim_Winner_Export[col].replace(replace_dict, inplace=True)
934
+
935
+ del replace_dict, Sim_Winner_Frame, Sim_Winners
936
+
937
+ st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:8].values, return_counts=True)),
938
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
939
+ st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
940
+ st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(maps_dict['Pos_map'])
941
+ st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(maps_dict['Salary_map'])
942
+ st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(maps_dict['Own_map']) / 100
943
+ st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(2500)
944
+ st.session_state.player_freq['Edge'] = st.session_state.player_freq['Exposure'] - st.session_state.player_freq['Proj Own']
945
+ st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(maps_dict['Team_map'])
946
+ for checkVar in range(len(team_list)):
947
+ st.session_state.player_freq['Team'] = st.session_state.player_freq['Team'].replace(item_list, team_list)
948
+
949
+ with st.container():
950
+ if 'player_freq' in st.session_state:
951
+ player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
952
+ if player_split_var2 == 'Specific Players':
953
+ find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
954
+ elif player_split_var2 == 'Full Players':
955
+ find_var2 = st.session_state.player_freq.Player.values.tolist()
956
+
957
+ if player_split_var2 == 'Specific Players':
958
+ st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
959
+ if player_split_var2 == 'Full Players':
960
+ st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
961
+ if 'Sim_Winner_Display' in st.session_state:
962
+ st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
963
+ if 'Sim_Winner_Export' in st.session_state:
964
+ st.download_button(
965
+ label="Export Full Frame",
966
+ data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
967
+ file_name='NBA_consim_export.csv',
968
+ mime='text/csv',
969
+ )
970
+
971
+ with st.container():
972
+ # tab1 = st.tabs(['Overall Exposures'])
973
+ # with tab1:
974
+ if 'player_freq' in st.session_state:
975
+ st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
976
+ st.download_button(
977
+ label="Export Exposures",
978
+ data=st.session_state.player_freq.to_csv().encode('utf-8'),
979
+ file_name='player_freq_export.csv',
980
+ mime='text/csv',
981
+ )
982
+
983
+ del gcservice_account
984
+ del dk_roo_raw, fd_roo_raw
985
+ del t_stamp
986
+ del dkid_dict, fdid_dict
987
+ del static_exposure, overall_exposure
988
+ del insert_port1, Contest_Size, sharp_split, Strength_var, scaling_var, Sort_function, Sim_function, strength_grow, field_growth
989
+ del raw_baselines
990
+ del freq_format
991
+
992
+ gc.collect()