Multichem's picture
Update app.py
cef49f8
raw
history blame
38.2 kB
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pulp
import random
@st.cache_resource
def init_conn():
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
return gc
gspreadcon = init_conn()
dk_player_url = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
@st.cache_data
def load_overall_stats():
sh = gspreadcon.open_by_url(dk_player_url)
worksheet = sh.worksheet('DK_Build_Up')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
raw_display.replace("", 'Welp', inplace=True)
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
dk_raw = raw_display.sort_values(by='Median', ascending=False)
worksheet = sh.worksheet('FD_Build_Up')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
raw_display.replace("", 'Welp', inplace=True)
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
fd_raw = raw_display.sort_values(by='Median', ascending=False)
worksheet = sh.worksheet('Player_Level_ROO')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace("", 'Welp', inplace=True)
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
roo_raw = raw_display.sort_values(by='Median', ascending=False)
worksheet = sh.worksheet('Timestamp')
timestamp = worksheet.acell('A1').value
return dk_raw, fd_raw, roo_raw, timestamp
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
dk_raw, fd_raw, roo_raw, timestamp = load_overall_stats()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
tab1, tab2 = st.tabs(['Uploads and Info', 'Optimizer'])
with tab1:
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'Median', 'Own'.")
col1, col2 = st.columns([1, 5])
with col1:
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
if proj_file is not None:
try:
proj_dataframe = pd.read_csv(proj_file)
except:
proj_dataframe = pd.read_excel(proj_file)
with col2:
if proj_file is not None:
st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with tab2:
col1, col2 = st.columns([1, 5])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
dk_raw, fd_raw, roo_raw, timestamp = load_overall_stats()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
for key in st.session_state.keys():
del st.session_state[key]
slate_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='slate_var1')
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
if site_var1 == 'Draftkings':
if slate_var1 == 'User':
init_baselines = proj_dataframe
elif slate_var1 != 'User':
init_baselines = dk_raw
elif site_var1 == 'Fanduel':
if slate_var1 == 'User':
init_baselines = proj_dataframe
elif slate_var1 != 'User':
init_baselines = fd_raw
contest_var1 = st.selectbox("What contest type are you optimizing for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var1')
split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
if split_var1 == 'Specific Games':
team_var1 = st.multiselect('Which teams would you like to include in the optimization?', options = init_baselines['Team'].unique(), key='team_var1')
elif split_var1 == 'Full Slate Run':
team_var1 = init_baselines.Team.values.tolist()
lock_var1 = st.multiselect("Are there any players you want to use in all lineups (Lock Button)?", options = init_baselines['Player'].unique(), key='lock_var1')
avoid_var1 = st.multiselect("Are there any players you want to remove from the pool (Drop Button)?", options = init_baselines['Player'].unique(), key='avoid_var1')
linenum_var1 = st.number_input("How many lineups would you like to produce?", min_value = 1, max_value = 300, value = 20, step = 1, key='linenum_var1')
if site_var1 == 'Draftkings':
min_sal1 = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 47000, step = 100, key='min_sal1')
max_sal1 = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100, key='max_sal1')
elif site_var1 == 'Fanduel':
min_sal1 = st.number_input('Min Salary', min_value = 45000, max_value = 54900, value = 52000, step = 100, key='min_sal1')
max_sal1 = st.number_input('Max Salary', min_value = 45000, max_value = 55000, value = 55000, step = 100, key='max_sal1')
with col2:
init_baselines = init_baselines[init_baselines['Team'].isin(team_var1)]
init_baselines = init_baselines[~init_baselines['Player'].isin(avoid_var1)]
ownframe = init_baselines.copy()
ownframe['Own'] = ownframe['Own'] * (900 / ownframe['Own'].sum())
raw_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
raw_baselines['lock'] = np.where(raw_baselines['Player'].isin(lock_var1), 1, 0)
st.session_state.export_baselines = raw_baselines.copy()
st.session_state.display_baselines = raw_baselines.copy()
display_container = st.empty()
display_dl_container = st.empty()
optimize_container = st.empty()
download_container = st.empty()
freq_container = st.empty()
if st.button('Optimize'):
max_proj = 1000
max_own = 1000
total_proj = 0
total_own = 0
lineup_display = []
check_list = []
lineups = []
portfolio = pd.DataFrame()
x = 1
with st.spinner('Wait for it...'):
with optimize_container:
while x <= linenum_var1:
sorted_lineup = []
p_used = []
cvar = 0
firvar = 0
secvar = 0
thirvar = 0
raw_proj_file = raw_baselines
raw_flex_file = raw_proj_file.dropna(how='all')
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
flex_file = raw_flex_file
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
flex_file['name_var'] = flex_file['Player']
flex_file['lock'] = np.where(flex_file['Player'].isin(lock_var1), 1, 0)
player_ids = flex_file.index
overall_players = flex_file[['Player']]
overall_players['player_var_add'] = flex_file.index
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
player_team = dict(zip(flex_file['Player'], flex_file['Team']))
player_pos = dict(zip(flex_file['Player'], flex_file['Position']))
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal1
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal1
if site_var1 == 'Draftkings':
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var1)
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] != "Var"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 8
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "PG"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "SG"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "SF"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "PF"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "C"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("PG")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("SG")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("SF")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("PF")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("C")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
elif site_var1 == 'Fanduel':
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var1)
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] != "Var"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 8
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "PG"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "SG"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "SF"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "PF"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "C"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 2
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("PG")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("SG")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("SF")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("PF")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'].str.contains("C")].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 1
player_count = []
player_trim = []
lineup_list = []
if contest_var1 == 'Cash':
obj_points = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_own - .001
elif contest_var1 != 'Cash':
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_proj - .01
total_score.solve()
for v in total_score.variables():
if v.varValue > 0:
lineup_list.append(v.name)
df = pd.DataFrame(lineup_list)
df['Names'] = df[0].map(player_match)
df['Cost'] = df['Names'].map(player_sal)
df['Proj'] = df['Names'].map(player_proj)
df['Own'] = df['Names'].map(player_own)
total_cost = sum(df['Cost'])
total_own = sum(df['Own'])
total_proj = sum(df['Proj'])
lineup_raw = pd.DataFrame(lineup_list)
lineup_raw['Names'] = lineup_raw[0].map(player_match)
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
lineup_final = lineup_raw.sort_values(by=['value'])
del lineup_final[lineup_final.columns[0]]
del lineup_final[lineup_final.columns[1]]
lineup_final = lineup_final.reset_index(drop=True)
# if site_var1 == 'Draftkings':
# line_hold = lineup_final[['Names']]
# line_hold['pos'] = line_hold['Names'].map(player_pos)
# cvar = 0
# for pname in range(0,len(line_hold)):
# if cvar == 2:
# pname = len(line_hold)
# elif cvar < 2:
# if line_hold.iat[pname,1] == 'C':
# if line_hold.iat[pname,0] not in p_used:
# sorted_lineup.append(line_hold.iat[pname,0])
# cvar = cvar + 1
# p_used.extend(sorted_lineup)
# wvar = 0
# for pname in range(0,len(line_hold)):
# if wvar == 3:
# pname = len(line_hold)
# elif wvar < 3:
# if line_hold.iat[pname,1] in ['RW', 'LW', 'W']:
# if line_hold.iat[pname,0] not in p_used:
# sorted_lineup.append(line_hold.iat[pname,0])
# wvar = wvar + 1
# p_used.extend(sorted_lineup)
# dvar = 0
# for pname in range(0,len(line_hold)):
# if dvar == 2:
# pname = len(line_hold)
# elif dvar < 2:
# if line_hold.iat[pname,1] == "D":
# if line_hold.iat[pname,0] not in p_used:
# sorted_lineup.append(line_hold.iat[pname,0])
# dvar = dvar + 1
# p_used.extend(sorted_lineup)
# for pname in range(0,len(line_hold)):
# if line_hold.iat[pname,1] == 'G':
# if line_hold.iat[pname,0] not in p_used:
# sorted_lineup.append(line_hold.iat[pname,0])
# p_used.extend(sorted_lineup)
# for pname in range(0,len(line_hold)):
# if line_hold.iat[pname,1] != 'G':
# if line_hold.iat[pname,0] not in p_used:
# sorted_lineup.append(line_hold.iat[pname,0])
# p_used.extend(sorted_lineup)
# lineup_final['sorted'] = sorted_lineup
# lineup_final = lineup_final.drop(columns=['Names'])
# lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
# elif site_var1 == 'Fanduel':
# line_hold = lineup_final[['Names']]
# line_hold['pos'] = line_hold['Names'].map(player_pos)
# cvar = 0
# for pname in range(0,len(line_hold)):
# if cvar == 2:
# pname = len(line_hold)
# elif cvar < 2:
# if line_hold.iat[pname,1] == 'C':
# if line_hold.iat[pname,0] not in p_used:
# sorted_lineup.append(line_hold.iat[pname,0])
# cvar = cvar + 1
# p_used.extend(sorted_lineup)
# wvar = 0
# for pname in range(0,len(line_hold)):
# if wvar == 2:
# pname = len(line_hold)
# elif wvar < 2:
# if line_hold.iat[pname,1] == 'W':
# if line_hold.iat[pname,0] not in p_used:
# sorted_lineup.append(line_hold.iat[pname,0])
# wvar = wvar + 1
# p_used.extend(sorted_lineup)
# dvar = 0
# for pname in range(0,len(line_hold)):
# if dvar == 2:
# pname = len(line_hold)
# elif dvar < 2:
# if line_hold.iat[pname,1] == "D":
# if line_hold.iat[pname,0] not in p_used:
# sorted_lineup.append(line_hold.iat[pname,0])
# dvar = dvar + 1
# p_used.extend(sorted_lineup)
# for pname in range(0,len(line_hold)):
# if line_hold.iat[pname,1] != 'G':
# if line_hold.iat[pname,0] not in p_used:
# sorted_lineup.append(line_hold.iat[pname,0])
# p_used.extend(sorted_lineup)
# for pname in range(0,len(line_hold)):
# if line_hold.iat[pname,1] == 'G':
# if line_hold.iat[pname,0] not in p_used:
# sorted_lineup.append(line_hold.iat[pname,0])
# p_used.extend(sorted_lineup)
# lineup_final['sorted'] = sorted_lineup
# lineup_final = lineup_final.drop(columns=['Names'])
# lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
lineup_test = lineup_final
lineup_final = lineup_final.T
lineup_final['Cost'] = total_cost
lineup_final['Proj'] = total_proj
lineup_final['Own'] = total_own
lineup_test['Team'] = lineup_test['Names'].map(player_team)
lineup_test['Position'] = lineup_test['Names'].map(player_pos)
lineup_test['Salary'] = lineup_test['Names'].map(player_sal)
lineup_test['Proj'] = lineup_test['Names'].map(player_proj)
lineup_test['Own'] = lineup_test['Names'].map(player_own)
lineup_test = lineup_test.set_index('Names')
lineup_test.loc['Column_Total'] = lineup_test.sum(numeric_only=True, axis=0)
lineup_display.append(lineup_test)
with col2:
with st.container():
st.table(lineup_test)
max_proj = total_proj
max_own = total_own
check_list.append(total_proj)
portfolio = pd.concat([portfolio, lineup_final], ignore_index = True)
x += 1
if site_var1 == 'Draftkings':
portfolio.rename(columns={0: "PG", 1: "SG", 2: "SF", 3: "PF", 4: "C", 5: "G", 6: "F", 7: "UTIL"}, inplace = True)
elif site_var1 == 'Fanduel':
portfolio.rename(columns={0: "PG", 1: "SG", 2: "SF", 3: "PF", 4: "C", 5: "G", 6: "F", 7: "UTIL"}, inplace = True)
portfolio = portfolio.dropna()
portfolio = portfolio.reset_index()
portfolio['Lineup_num'] = portfolio['index'] + 1
portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True)
portfolio = portfolio.set_index('Lineup')
portfolio = portfolio.drop(columns=['index'])
st.session_state.portfolio = portfolio.drop_duplicates()
st.session_state.final_outcomes = portfolio
# if site_var1 == 'Draftkings':
# final_outcomes = portfolio[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'UTIL', 'Cost', 'Proj', 'Own']]
# final_outcomes_export = pd.DataFrame()
# final_outcomes_export['C1'] = final_outcomes['C1']
# final_outcomes_export['C2'] = final_outcomes['C2']
# final_outcomes_export['W1'] = final_outcomes['W1']
# final_outcomes_export['W2'] = final_outcomes['W2']
# final_outcomes_export['W3'] = final_outcomes['W3']
# final_outcomes_export['D1'] = final_outcomes['D1']
# final_outcomes_export['D2'] = final_outcomes['D2']
# final_outcomes_export['G'] = final_outcomes['G']
# final_outcomes_export['UTIL'] = final_outcomes['UTIL']
# final_outcomes_export['Salary'] = final_outcomes['Cost']
# final_outcomes_export['Own'] = final_outcomes['Own']
# final_outcomes_export['Proj'] = final_outcomes['Proj']
# final_outcomes_export['C1'].replace(dkid_dict, inplace=True)
# final_outcomes_export['C2'].replace(dkid_dict, inplace=True)
# final_outcomes_export['W1'].replace(dkid_dict, inplace=True)
# final_outcomes_export['W2'].replace(dkid_dict, inplace=True)
# final_outcomes_export['W3'].replace(dkid_dict, inplace=True)
# final_outcomes_export['D1'].replace(dkid_dict, inplace=True)
# final_outcomes_export['D2'].replace(dkid_dict, inplace=True)
# final_outcomes_export['G'].replace(dkid_dict, inplace=True)
# final_outcomes_export['UTIL'].replace(dkid_dict, inplace=True)
# st.session_state.final_outcomes_export = final_outcomes_export.copy()
# elif site_var1 == 'Fanduel':
# final_outcomes = portfolio[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'UTIL1', 'UTIL2', 'G', 'Cost', 'Proj', 'Own']]
# final_outcomes_export = pd.DataFrame()
# final_outcomes_export['C1'] = final_outcomes['C1']
# final_outcomes_export['C2'] = final_outcomes['C2']
# final_outcomes_export['W1'] = final_outcomes['W1']
# final_outcomes_export['W2'] = final_outcomes['W2']
# final_outcomes_export['D1'] = final_outcomes['D1']
# final_outcomes_export['D2'] = final_outcomes['D2']
# final_outcomes_export['UTIL1'] = final_outcomes['UTIL1']
# final_outcomes_export['UTIL2'] = final_outcomes['UTIL2']
# final_outcomes_export['G'] = final_outcomes['G']
# final_outcomes_export['Salary'] = final_outcomes['Cost']
# final_outcomes_export['Own'] = final_outcomes['Own']
# final_outcomes_export['Proj'] = final_outcomes['Proj']
# final_outcomes_export['C1'].replace(fdid_dict, inplace=True)
# final_outcomes_export['C2'].replace(fdid_dict, inplace=True)
# final_outcomes_export['W1'].replace(fdid_dict, inplace=True)
# final_outcomes_export['W2'].replace(fdid_dict, inplace=True)
# final_outcomes_export['D1'].replace(fdid_dict, inplace=True)
# final_outcomes_export['D2'].replace(fdid_dict, inplace=True)
# final_outcomes_export['UTIL1'].replace(fdid_dict, inplace=True)
# final_outcomes_export['UTIL2'].replace(fdid_dict, inplace=True)
# final_outcomes_export['G'].replace(fdid_dict, inplace=True)
# st.session_state.FD_final_outcomes_export = final_outcomes_export.copy()
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.portfolio.iloc[:,0:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(player_pos)
st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(player_sal)
st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(player_own) / 100
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(linenum_var1)
st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(player_team)
st.session_state.player_freq = st.session_state.player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']]
st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
with display_container:
display_container = st.empty()
if 'display_baselines' in st.session_state:
st.dataframe(st.session_state.display_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with display_dl_container:
display_dl_container = st.empty()
if 'export_baselines' in st.session_state:
st.download_button(
label="Export Projections",
data=convert_df_to_csv(st.session_state.export_baselines),
file_name='NHL_proj_export.csv',
mime='text/csv',
)
with optimize_container:
optimize_container = st.empty()
if 'final_outcomes' in st.session_state:
st.dataframe(st.session_state.final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with download_container:
download_container = st.empty()
if site_var1 == 'Draftkings':
if 'final_outcomes_export' in st.session_state:
st.download_button(
label="Export Optimals",
data=convert_df_to_csv(st.session_state.final_outcomes_export),
file_name='NHL_optimals_export.csv',
mime='text/csv',
)
elif site_var1 == 'Fanduel':
if 'FD_final_outcomes_export' in st.session_state:
st.download_button(
label="Export Optimals",
data=convert_df_to_csv(st.session_state.FD_final_outcomes_export),
file_name='FD_NHL_optimals_export.csv',
mime='text/csv',
)
with freq_container:
freq_container = st.empty()
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)