Spaces:
Running
Running
James McCool
commited on
Commit
·
2d7da0e
1
Parent(s):
a82abe0
more fixes to the individual run
Browse files
app.py
CHANGED
@@ -150,7 +150,7 @@ with tab1:
|
|
150 |
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
|
151 |
working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
|
152 |
working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
|
153 |
-
|
154 |
flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes']]
|
155 |
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
|
156 |
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
|
@@ -161,27 +161,27 @@ with tab1:
|
|
161 |
salary_file = flex_file.copy()
|
162 |
|
163 |
overall_players = overall_file[['Player']]
|
164 |
-
|
165 |
for x in range(0,total_sims):
|
166 |
salary_file[x] = salary_file['Salary']
|
167 |
-
|
168 |
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
169 |
-
|
170 |
salary_file = salary_file.div(1000)
|
171 |
-
|
172 |
for x in range(0,total_sims):
|
173 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
174 |
-
|
175 |
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
176 |
-
|
177 |
players_only = hold_file[['Player']]
|
178 |
raw_lineups_file = players_only
|
179 |
-
|
180 |
for x in range(0,total_sims):
|
181 |
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
|
182 |
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
183 |
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
184 |
-
|
185 |
players_only=players_only.drop(['Player'], axis=1)
|
186 |
|
187 |
salary_4x_check = (overall_file - (salary_file*4))
|
@@ -210,6 +210,7 @@ with tab1:
|
|
210 |
final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
|
211 |
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
212 |
final_Proj['Own'] = final_Proj['Own'].astype('float')
|
|
|
213 |
final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True)
|
214 |
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
215 |
final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100
|
@@ -219,7 +220,6 @@ with tab1:
|
|
219 |
|
220 |
final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'LevX', 'ValX']]
|
221 |
final_Proj = final_Proj.set_index('Player')
|
222 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
223 |
|
224 |
st.session_state.final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
|
225 |
|
@@ -326,7 +326,7 @@ with tab1:
|
|
326 |
st.download_button(
|
327 |
label="Export Tables",
|
328 |
data=convert_df_to_csv(st.session_state.final_Proj),
|
329 |
-
file_name='
|
330 |
mime='text/csv',
|
331 |
)
|
332 |
else:
|
|
|
150 |
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
|
151 |
working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
|
152 |
working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
|
153 |
+
|
154 |
flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes']]
|
155 |
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
|
156 |
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
|
|
|
161 |
salary_file = flex_file.copy()
|
162 |
|
163 |
overall_players = overall_file[['Player']]
|
164 |
+
|
165 |
for x in range(0,total_sims):
|
166 |
salary_file[x] = salary_file['Salary']
|
167 |
+
|
168 |
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
169 |
+
|
170 |
salary_file = salary_file.div(1000)
|
171 |
+
|
172 |
for x in range(0,total_sims):
|
173 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
174 |
+
|
175 |
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
176 |
+
|
177 |
players_only = hold_file[['Player']]
|
178 |
raw_lineups_file = players_only
|
179 |
+
|
180 |
for x in range(0,total_sims):
|
181 |
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
|
182 |
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
183 |
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
184 |
+
|
185 |
players_only=players_only.drop(['Player'], axis=1)
|
186 |
|
187 |
salary_4x_check = (overall_file - (salary_file*4))
|
|
|
210 |
final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
|
211 |
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
212 |
final_Proj['Own'] = final_Proj['Own'].astype('float')
|
213 |
+
final_Proj = final_Proj[['Player', 'Minutes Proj',, 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own']]
|
214 |
final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True)
|
215 |
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
216 |
final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100
|
|
|
220 |
|
221 |
final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'LevX', 'ValX']]
|
222 |
final_Proj = final_Proj.set_index('Player')
|
|
|
223 |
|
224 |
st.session_state.final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
|
225 |
|
|
|
326 |
st.download_button(
|
327 |
label="Export Tables",
|
328 |
data=convert_df_to_csv(st.session_state.final_Proj),
|
329 |
+
file_name='NBA_pivot_export.csv',
|
330 |
mime='text/csv',
|
331 |
)
|
332 |
else:
|