James McCool commited on
Commit
2d7da0e
·
1 Parent(s): a82abe0

more fixes to the individual run

Browse files
Files changed (1) hide show
  1. app.py +11 -11
app.py CHANGED
@@ -150,7 +150,7 @@ with tab1:
150
  working_roo = working_roo[working_roo['Team'].isin(team_var1)]
151
  working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
152
  working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
153
-
154
  flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes']]
155
  flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
156
  flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
@@ -161,27 +161,27 @@ with tab1:
161
  salary_file = flex_file.copy()
162
 
163
  overall_players = overall_file[['Player']]
164
-
165
  for x in range(0,total_sims):
166
  salary_file[x] = salary_file['Salary']
167
-
168
  salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
169
-
170
  salary_file = salary_file.div(1000)
171
-
172
  for x in range(0,total_sims):
173
  overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
174
-
175
  overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
176
-
177
  players_only = hold_file[['Player']]
178
  raw_lineups_file = players_only
179
-
180
  for x in range(0,total_sims):
181
  maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
182
  raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
183
  players_only[x] = raw_lineups_file[x].rank(ascending=False)
184
-
185
  players_only=players_only.drop(['Player'], axis=1)
186
 
187
  salary_4x_check = (overall_file - (salary_file*4))
@@ -210,6 +210,7 @@ with tab1:
210
  final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
211
  final_Proj['Team'] = final_Proj['Player'].map(team_dict)
212
  final_Proj['Own'] = final_Proj['Own'].astype('float')
 
213
  final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True)
214
  final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
215
  final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100
@@ -219,7 +220,6 @@ with tab1:
219
 
220
  final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'LevX', 'ValX']]
221
  final_Proj = final_Proj.set_index('Player')
222
- final_Proj = final_Proj.sort_values(by='Median', ascending=False)
223
 
224
  st.session_state.final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
225
 
@@ -326,7 +326,7 @@ with tab1:
326
  st.download_button(
327
  label="Export Tables",
328
  data=convert_df_to_csv(st.session_state.final_Proj),
329
- file_name='NFL_pivot_export.csv',
330
  mime='text/csv',
331
  )
332
  else:
 
150
  working_roo = working_roo[working_roo['Team'].isin(team_var1)]
151
  working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
152
  working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
153
+
154
  flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes']]
155
  flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
156
  flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
 
161
  salary_file = flex_file.copy()
162
 
163
  overall_players = overall_file[['Player']]
164
+
165
  for x in range(0,total_sims):
166
  salary_file[x] = salary_file['Salary']
167
+
168
  salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
169
+
170
  salary_file = salary_file.div(1000)
171
+
172
  for x in range(0,total_sims):
173
  overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
174
+
175
  overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
176
+
177
  players_only = hold_file[['Player']]
178
  raw_lineups_file = players_only
179
+
180
  for x in range(0,total_sims):
181
  maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
182
  raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
183
  players_only[x] = raw_lineups_file[x].rank(ascending=False)
184
+
185
  players_only=players_only.drop(['Player'], axis=1)
186
 
187
  salary_4x_check = (overall_file - (salary_file*4))
 
210
  final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
211
  final_Proj['Team'] = final_Proj['Player'].map(team_dict)
212
  final_Proj['Own'] = final_Proj['Own'].astype('float')
213
+ final_Proj = final_Proj[['Player', 'Minutes Proj',, 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own']]
214
  final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True)
215
  final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
216
  final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100
 
220
 
221
  final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'LevX', 'ValX']]
222
  final_Proj = final_Proj.set_index('Player')
 
223
 
224
  st.session_state.final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
225
 
 
326
  st.download_button(
327
  label="Export Tables",
328
  data=convert_df_to_csv(st.session_state.final_Proj),
329
+ file_name='NBA_pivot_export.csv',
330
  mime='text/csv',
331
  )
332
  else: