James McCool commited on
Commit
b4ac9d4
·
1 Parent(s): 86376f2

Adjusted salary thresholds, added player source in loop

Browse files
Files changed (1) hide show
  1. app.py +19 -18
app.py CHANGED
@@ -182,9 +182,9 @@ with tab1:
182
 
183
  players_only=players_only.drop(['Player'], axis=1)
184
 
185
- salary_2x_check = (overall_file - (salary_file*4))
186
- salary_3x_check = (overall_file - (salary_file*5))
187
- salary_4x_check = (overall_file - (salary_file*6))
188
  gpp_check = (overall_file - ((salary_file*5)+10))
189
 
190
  players_only['Average_Rank'] = players_only.mean(axis=1)
@@ -192,17 +192,17 @@ with tab1:
192
  players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
193
  players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
194
  players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
195
- players_only['3x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
196
- players_only['4x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
197
- players_only['5x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
198
  players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
199
 
200
  players_only['Player'] = hold_file[['Player']]
201
 
202
- final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
203
 
204
  final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
205
- final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
206
 
207
  final_Proj['Own'] = final_Proj['Player'].map(own_dict)
208
  final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
@@ -215,7 +215,7 @@ with tab1:
215
  final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
216
  final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
217
 
218
- final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%', 'Own', 'LevX', 'ValX']]
219
  final_Proj = final_Proj.set_index('Player')
220
  final_Proj = final_Proj.sort_values(by='Median', ascending=False)
221
 
@@ -268,9 +268,9 @@ with tab1:
268
 
269
  players_only=players_only.drop(['Player'], axis=1)
270
 
271
- salary_2x_check = (overall_file - (salary_file*4))
272
- salary_3x_check = (overall_file - (salary_file*5))
273
- salary_4x_check = (overall_file - (salary_file*6))
274
  gpp_check = (overall_file - ((salary_file*5)+10))
275
 
276
  players_only['Average_Rank'] = players_only.mean(axis=1)
@@ -278,17 +278,17 @@ with tab1:
278
  players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
279
  players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
280
  players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
281
- players_only['3x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
282
- players_only['4x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
283
- players_only['5x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
284
  players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
285
 
286
  players_only['Player'] = hold_file[['Player']]
287
 
288
- final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
289
 
290
  final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
291
- final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
292
 
293
  final_Proj['Own'] = final_Proj['Player'].map(own_dict)
294
  final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
@@ -300,8 +300,9 @@ with tab1:
300
  final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']
301
  final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
302
  final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
 
303
 
304
- final_Proj = final_Proj[['Player', 'Pivot_source', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
305
 
306
  final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
307
  final_proj_list.append(final_Proj)
 
182
 
183
  players_only=players_only.drop(['Player'], axis=1)
184
 
185
+ salary_4x_check = (overall_file - (salary_file*4))
186
+ salary_5x_check = (overall_file - (salary_file*5))
187
+ salary_6x_check = (overall_file - (salary_file*6))
188
  gpp_check = (overall_file - ((salary_file*5)+10))
189
 
190
  players_only['Average_Rank'] = players_only.mean(axis=1)
 
192
  players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
193
  players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
194
  players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
195
+ players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
196
+ players_only['5x%'] = salary_5x_check[salary_5x_check >= 1].count(axis=1)/float(total_sims)
197
+ players_only['6x%'] = salary_6x_check[salary_6x_check >= 1].count(axis=1)/float(total_sims)
198
  players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
199
 
200
  players_only['Player'] = hold_file[['Player']]
201
 
202
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
203
 
204
  final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
205
+ final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
206
 
207
  final_Proj['Own'] = final_Proj['Player'].map(own_dict)
208
  final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
 
215
  final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
216
  final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
217
 
218
+ final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'LevX', 'ValX']]
219
  final_Proj = final_Proj.set_index('Player')
220
  final_Proj = final_Proj.sort_values(by='Median', ascending=False)
221
 
 
268
 
269
  players_only=players_only.drop(['Player'], axis=1)
270
 
271
+ salary_4x_check = (overall_file - (salary_file*4))
272
+ salary_5x_check = (overall_file - (salary_file*5))
273
+ salary_6x_check = (overall_file - (salary_file*6))
274
  gpp_check = (overall_file - ((salary_file*5)+10))
275
 
276
  players_only['Average_Rank'] = players_only.mean(axis=1)
 
278
  players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
279
  players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
280
  players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
281
+ players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
282
+ players_only['5x%'] = salary_5x_check[salary_5x_check >= 1].count(axis=1)/float(total_sims)
283
+ players_only['6x%'] = salary_6x_check[salary_6x_check >= 1].count(axis=1)/float(total_sims)
284
  players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
285
 
286
  players_only['Player'] = hold_file[['Player']]
287
 
288
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
289
 
290
  final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
291
+ final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
292
 
293
  final_Proj['Own'] = final_Proj['Player'].map(own_dict)
294
  final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
 
300
  final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']
301
  final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
302
  final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
303
+ final_Proj['Pivot_source'] = players
304
 
305
+ final_Proj = final_Proj[['Player', 'Pivot_source', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'LevX', 'ValX']]
306
 
307
  final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
308
  final_proj_list.append(final_Proj)