Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
b4ac9d4
1
Parent(s):
86376f2
Adjusted salary thresholds, added player source in loop
Browse files
app.py
CHANGED
@@ -182,9 +182,9 @@ with tab1:
|
|
182 |
|
183 |
players_only=players_only.drop(['Player'], axis=1)
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
gpp_check = (overall_file - ((salary_file*5)+10))
|
189 |
|
190 |
players_only['Average_Rank'] = players_only.mean(axis=1)
|
@@ -192,17 +192,17 @@ with tab1:
|
|
192 |
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
193 |
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
194 |
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
195 |
-
players_only['
|
196 |
-
players_only['
|
197 |
-
players_only['
|
198 |
players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
|
199 |
|
200 |
players_only['Player'] = hold_file[['Player']]
|
201 |
|
202 |
-
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '
|
203 |
|
204 |
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
205 |
-
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '
|
206 |
|
207 |
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
208 |
final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
|
@@ -215,7 +215,7 @@ with tab1:
|
|
215 |
final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
|
216 |
final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
|
217 |
|
218 |
-
final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '
|
219 |
final_Proj = final_Proj.set_index('Player')
|
220 |
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
221 |
|
@@ -268,9 +268,9 @@ with tab1:
|
|
268 |
|
269 |
players_only=players_only.drop(['Player'], axis=1)
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
gpp_check = (overall_file - ((salary_file*5)+10))
|
275 |
|
276 |
players_only['Average_Rank'] = players_only.mean(axis=1)
|
@@ -278,17 +278,17 @@ with tab1:
|
|
278 |
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
279 |
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
280 |
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
281 |
-
players_only['
|
282 |
-
players_only['
|
283 |
-
players_only['
|
284 |
players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
|
285 |
|
286 |
players_only['Player'] = hold_file[['Player']]
|
287 |
|
288 |
-
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '
|
289 |
|
290 |
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
291 |
-
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '
|
292 |
|
293 |
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
294 |
final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
|
@@ -300,8 +300,9 @@ with tab1:
|
|
300 |
final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']
|
301 |
final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
|
302 |
final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
|
|
|
303 |
|
304 |
-
final_Proj = final_Proj[['Player', 'Pivot_source', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '
|
305 |
|
306 |
final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
|
307 |
final_proj_list.append(final_Proj)
|
|
|
182 |
|
183 |
players_only=players_only.drop(['Player'], axis=1)
|
184 |
|
185 |
+
salary_4x_check = (overall_file - (salary_file*4))
|
186 |
+
salary_5x_check = (overall_file - (salary_file*5))
|
187 |
+
salary_6x_check = (overall_file - (salary_file*6))
|
188 |
gpp_check = (overall_file - ((salary_file*5)+10))
|
189 |
|
190 |
players_only['Average_Rank'] = players_only.mean(axis=1)
|
|
|
192 |
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
193 |
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
194 |
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
195 |
+
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
196 |
+
players_only['5x%'] = salary_5x_check[salary_5x_check >= 1].count(axis=1)/float(total_sims)
|
197 |
+
players_only['6x%'] = salary_6x_check[salary_6x_check >= 1].count(axis=1)/float(total_sims)
|
198 |
players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
|
199 |
|
200 |
players_only['Player'] = hold_file[['Player']]
|
201 |
|
202 |
+
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
|
203 |
|
204 |
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
205 |
+
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
|
206 |
|
207 |
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
208 |
final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
|
|
|
215 |
final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
|
216 |
final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
|
217 |
|
218 |
+
final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'LevX', 'ValX']]
|
219 |
final_Proj = final_Proj.set_index('Player')
|
220 |
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
221 |
|
|
|
268 |
|
269 |
players_only=players_only.drop(['Player'], axis=1)
|
270 |
|
271 |
+
salary_4x_check = (overall_file - (salary_file*4))
|
272 |
+
salary_5x_check = (overall_file - (salary_file*5))
|
273 |
+
salary_6x_check = (overall_file - (salary_file*6))
|
274 |
gpp_check = (overall_file - ((salary_file*5)+10))
|
275 |
|
276 |
players_only['Average_Rank'] = players_only.mean(axis=1)
|
|
|
278 |
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
279 |
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
280 |
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
281 |
+
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
282 |
+
players_only['5x%'] = salary_5x_check[salary_5x_check >= 1].count(axis=1)/float(total_sims)
|
283 |
+
players_only['6x%'] = salary_6x_check[salary_6x_check >= 1].count(axis=1)/float(total_sims)
|
284 |
players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
|
285 |
|
286 |
players_only['Player'] = hold_file[['Player']]
|
287 |
|
288 |
+
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
|
289 |
|
290 |
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
291 |
+
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
|
292 |
|
293 |
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
294 |
final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
|
|
|
300 |
final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']
|
301 |
final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
|
302 |
final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
|
303 |
+
final_Proj['Pivot_source'] = players
|
304 |
|
305 |
+
final_Proj = final_Proj[['Player', 'Pivot_source', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'LevX', 'ValX']]
|
306 |
|
307 |
final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
|
308 |
final_proj_list.append(final_Proj)
|