Multichem commited on
Commit
bda876a
·
1 Parent(s): 346ce08

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +252 -0
app.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import streamlit as st
4
+ import gspread
5
+
6
+ st.set_page_config(layout="wide")
7
+
8
+ @st.cache_resource
9
+ def init_conn():
10
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
11
+ "https://www.googleapis.com/auth/drive"]
12
+
13
+ credentials = {
14
+ "type": "service_account",
15
+ "project_id": "sheets-api-connect-378620",
16
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
17
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
18
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
19
+ "client_id": "106625872877651920064",
20
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
21
+ "token_uri": "https://oauth2.googleapis.com/token",
22
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
23
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
24
+ }
25
+
26
+ gc = gspread.service_account_from_dict(credentials)
27
+ return gc
28
+
29
+ gcservice_account = init_conn()
30
+
31
+
32
+
33
+ wrong_acro = ['WSH', 'AZ']
34
+ right_acro = ['WAS', 'ARI']
35
+
36
+ game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
37
+ 'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
38
+
39
+ team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
40
+ '5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
41
+
42
+ player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
43
+ '4x%': '{:.2%}','GPP%': '{:.2%}'}
44
+
45
+ all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348'
46
+
47
+ @st.cache_resource(ttl = 600)
48
+ def player_stat_table():
49
+ sh = gcservice_account.open_by_url(all_dk_player_projections)
50
+ worksheet = sh.worksheet('Player_Projections')
51
+ player_stats = pd.DataFrame(worksheet.get_all_records())
52
+
53
+ worksheet = sh.worksheet('DK_Stacks')
54
+ load_display = pd.DataFrame(worksheet.get_all_records())
55
+ raw_display = load_display
56
+ dk_stacks_raw = raw_display.sort_values(by='Own', ascending=False)
57
+
58
+ worksheet = sh.worksheet('FD_Stacks')
59
+ load_display = pd.DataFrame(worksheet.get_all_records())
60
+ raw_display = load_display
61
+ fd_stacks_raw = raw_display.sort_values(by='Own', ascending=False)
62
+
63
+ worksheet = sh.worksheet('DK_ROO')
64
+ load_display = pd.DataFrame(worksheet.get_all_records())
65
+ load_display.replace('', np.nan, inplace=True)
66
+ dk_roo_raw = load_display.dropna(subset=['Median'])
67
+
68
+ worksheet = sh.worksheet('FD_ROO')
69
+ load_display = pd.DataFrame(worksheet.get_all_records())
70
+ load_display.replace('', np.nan, inplace=True)
71
+ fd_roo_raw = load_display.dropna(subset=['Median'])
72
+
73
+ worksheet = sh.worksheet('Site_Info')
74
+ site_slates = pd.DataFrame(worksheet.get_all_records())
75
+
76
+ return player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, site_slates
77
+
78
+ @st.cache_data
79
+ def convert_df_to_csv(df):
80
+ return df.to_csv().encode('utf-8')
81
+
82
+ player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, site_slates = player_stat_table()
83
+ opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
84
+ t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
85
+
86
+ tab1, tab2 = st.tabs(['Uploads and Info', 'Pivot Finder'])
87
+
88
+ with tab1:
89
+ st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.")
90
+ col1, col2 = st.columns([1, 5])
91
+
92
+ with col1:
93
+ proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
94
+
95
+ if proj_file is not None:
96
+ try:
97
+ proj_dataframe = pd.read_csv(proj_file)
98
+ except:
99
+ proj_dataframe = pd.read_excel(proj_file)
100
+ with col2:
101
+ if proj_file is not None:
102
+ st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
103
+
104
+ with tab2:
105
+ col1, col2 = st.columns([1, 5])
106
+ with col1:
107
+ st.info(t_stamp)
108
+ if st.button("Load/Reset Data", key='reset1'):
109
+ st.cache_data.clear()
110
+ player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, site_slates = player_stat_table()
111
+ opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
112
+ t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
113
+ data_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='data_var1')
114
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
115
+ if site_var1 == 'Draftkings':
116
+ if data_var1 == 'User':
117
+ raw_baselines = proj_dataframe
118
+ elif data_var1 != 'User':
119
+ raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == 'Main Slate']
120
+ raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
121
+ elif site_var1 == 'Fanduel':
122
+ if data_var1 == 'User':
123
+ raw_baselines = proj_dataframe
124
+ elif data_var1 != 'User':
125
+ raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == 'Main Slate']
126
+ raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
127
+ player_check = st.selectbox('Select player to create comps', options = dk_roo_raw['Player'].unique(), key='dk_player')
128
+ Salary_var = st.number_input('Acceptable +/- Salary range', min_value = 0, max_value = 1000, value = 300, step = 100)
129
+ Median_var = st.number_input('Acceptable +/- Median range', min_value = 0, max_value = 10, value = 3, step = 1)
130
+ pos_var1 = st.radio("Compare to all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_var1')
131
+ if pos_var1 == 'Specific Positions':
132
+ pos_var_list = st.multiselect('Which positions would you like to include?', options = raw_baselines['Position'].unique(), key='pos_var_list')
133
+ elif pos_var1 == 'All Positions':
134
+ pos_var_list = raw_baselines.Position.values.tolist()
135
+ split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
136
+ if split_var1 == 'Specific Games':
137
+ team_var1 = st.multiselect('Which teams would you like to include?', options = raw_baselines['Team'].unique(), key='team_var1')
138
+ elif split_var1 == 'Full Slate Run':
139
+ team_var1 = raw_baselines.Team.values.tolist()
140
+
141
+ with col2:
142
+ hold_container = st.empty()
143
+ if st.button('Simulate appropriate pivots'):
144
+ with hold_container:
145
+ if site_var1 == 'Draftkings':
146
+ working_roo = raw_baselines
147
+ working_roo.replace('', 0, inplace=True)
148
+ if site_var1 == 'Fanduel':
149
+ working_roo = raw_baselines
150
+ working_roo.replace('', 0, inplace=True)
151
+
152
+
153
+ own_dict = dict(zip(working_roo.Player, working_roo.Own))
154
+ team_dict = dict(zip(working_roo.Player, working_roo.Team))
155
+ opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
156
+ total_sims = 1000
157
+
158
+ player_var = working_roo.loc[working_roo['Player'] == player_check]
159
+ player_var = player_var.reset_index()
160
+
161
+ working_roo = working_roo[working_roo['Position'].isin(pos_var_list)]
162
+ working_roo = working_roo[working_roo['Team'].isin(team_var1)]
163
+ working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
164
+ working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
165
+
166
+ flex_file = working_roo[['Player', 'Position', 'Salary', 'Median']]
167
+ flex_file['Floor_raw'] = flex_file['Median'] * .20
168
+ flex_file['Ceiling_raw'] = flex_file['Median'] * 1.9
169
+ flex_file['Floor'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * .33), flex_file['Floor_raw'])
170
+ flex_file['Floor'] = np.where(flex_file['Position'] == 'RB', (flex_file['Median'] * .15), flex_file['Floor_raw'])
171
+ flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * 1.75), flex_file['Ceiling_raw'])
172
+ flex_file['Ceiling'] = np.where(flex_file['Position'] == 'RB', (flex_file['Median'] * 1.85), flex_file['Ceiling_raw'])
173
+ flex_file['STD'] = flex_file['Median'] / 4
174
+ flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
175
+ hold_file = flex_file
176
+ overall_file = flex_file
177
+ salary_file = flex_file
178
+
179
+ overall_players = overall_file[['Player']]
180
+
181
+ for x in range(0,total_sims):
182
+ salary_file[x] = salary_file['Salary']
183
+
184
+ salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
185
+ salary_file.astype('int').dtypes
186
+
187
+ salary_file = salary_file.div(1000)
188
+
189
+ for x in range(0,total_sims):
190
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
191
+
192
+ overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
193
+ overall_file.astype('int').dtypes
194
+
195
+ players_only = hold_file[['Player']]
196
+ raw_lineups_file = players_only
197
+
198
+ for x in range(0,total_sims):
199
+ maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
200
+ raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
201
+ players_only[x] = raw_lineups_file[x].rank(ascending=False)
202
+
203
+ players_only=players_only.drop(['Player'], axis=1)
204
+ players_only.astype('int').dtypes
205
+
206
+ salary_2x_check = (overall_file - (salary_file*2))
207
+ salary_3x_check = (overall_file - (salary_file*3))
208
+ salary_4x_check = (overall_file - (salary_file*4))
209
+
210
+ players_only['Average_Rank'] = players_only.mean(axis=1)
211
+ players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
212
+ players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
213
+ players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
214
+ players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
215
+ players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
216
+ players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
217
+ players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
218
+
219
+ players_only['Player'] = hold_file[['Player']]
220
+
221
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
222
+
223
+ final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
224
+ final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
225
+ final_Proj['Own'] = final_Proj['Player'].map(own_dict)
226
+ final_Proj['Team'] = final_Proj['Player'].map(team_dict)
227
+ final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
228
+ final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
229
+ final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
230
+ final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
231
+ final_Proj['LevX'] = 0
232
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
233
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
234
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
235
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
236
+ final_Proj['CPT_Own'] = final_Proj['Own'] / 4
237
+
238
+ final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
239
+ final_Proj = final_Proj.set_index('Player')
240
+ final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
241
+
242
+ with hold_container:
243
+ hold_container = st.empty()
244
+ final_Proj = final_Proj
245
+ st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
246
+
247
+ st.download_button(
248
+ label="Export Tables",
249
+ data=convert_df_to_csv(final_Proj),
250
+ file_name='NFL_pivot_export.csv',
251
+ mime='text/csv',
252
+ )