James McCool commited on
Commit
c4089de
·
1 Parent(s): 9d454de

Lots of changes to structure. Added looping function to pivot structure.

Browse files
Files changed (1) hide show
  1. app.py +291 -209
app.py CHANGED
@@ -1,112 +1,92 @@
1
- import streamlit as st
2
- st.set_page_config(layout="wide")
3
-
4
- for name in dir():
5
- if not name.startswith('_'):
6
- del globals()[name]
7
-
8
  import numpy as np
9
  import pandas as pd
10
  import streamlit as st
11
  import gspread
12
 
 
 
13
  @st.cache_resource
14
  def init_conn():
15
- scope = ['https://www.googleapis.com/auth/spreadsheets',
16
- "https://www.googleapis.com/auth/drive"]
17
-
18
- credentials = {
19
- "type": "service_account",
20
- "project_id": "sheets-api-connect-378620",
21
- "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
22
- "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
23
- "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
24
- "client_id": "106625872877651920064",
25
- "auth_uri": "https://accounts.google.com/o/oauth2/auth",
26
- "token_uri": "https://oauth2.googleapis.com/token",
27
- "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
28
- "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
29
- }
30
-
31
- gc = gspread.service_account_from_dict(credentials)
32
- return gc
33
-
34
- gcservice_account = init_conn()
35
-
36
- all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  @st.cache_resource(ttl = 300)
39
  def init_stat_load():
40
- sh = gcservice_account.open_by_url(all_dk_player_projections)
41
- worksheet = sh.worksheet('DK_Build_Up')
42
- raw_display = pd.DataFrame(worksheet.get_all_records())
43
- raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
44
- raw_display = raw_display[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks', 'Turnovers', 'Median', 'Own']]
45
- raw_display.replace("", 'Welp', inplace=True)
46
- raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
47
- raw_display = raw_display.loc[raw_display['Median'] > 0]
48
- raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
49
- dk_raw = raw_display.sort_values(by='Median', ascending=False)
50
-
51
- worksheet = sh.worksheet('FD_Build_Up')
52
- raw_display = pd.DataFrame(worksheet.get_all_records())
53
- raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
54
- raw_display = raw_display[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks', 'Turnovers', 'Median', 'Own']]
55
  raw_display.replace("", 'Welp', inplace=True)
56
  raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
57
  raw_display = raw_display.loc[raw_display['Median'] > 0]
58
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
59
- fd_raw = raw_display.sort_values(by='Median', ascending=False)
60
 
61
- worksheet = sh.worksheet('Timestamp')
62
- timestamp = worksheet.acell('A1').value
63
 
64
- return dk_raw, fd_raw, timestamp
65
 
66
  @st.cache_data
67
  def convert_df_to_csv(df):
68
  return df.to_csv().encode('utf-8')
69
 
70
- dk_raw, fd_raw, timestamp = init_stat_load()
71
- opp_dict = dict(zip(dk_raw.Team, dk_raw.Opp))
72
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
73
 
74
- tab1, tab2 = st.tabs(['Uploads and Info', 'Pivot Finder'])
75
 
76
  with tab1:
77
- st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'Median', 'Own'.")
78
- col1, col2 = st.columns([1, 5])
79
-
80
- with col1:
81
- proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
82
-
83
- if proj_file is not None:
84
- try:
85
- proj_dataframe = pd.read_csv(proj_file)
86
- try:
87
- proj_dataframe = proj_dataframe.replace(',','', regex=True)
88
- proj_dataframe['Salary'] = proj_dataframe['Salary'].astype(int)
89
- except:
90
- pass
91
- except:
92
- proj_dataframe = pd.read_excel(proj_file)
93
- try:
94
- proj_dataframe = proj_dataframe.replace(',','', regex=True)
95
- proj_dataframe['Salary'] = proj_dataframe['Salary'].astype(int)
96
- except:
97
- pass
98
- with col2:
99
- if proj_file is not None:
100
- st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
101
-
102
- with tab2:
103
  col1, col2 = st.columns([1, 9])
104
  with col1:
105
  st.info(t_stamp)
106
  if st.button("Load/Reset Data", key='reset1'):
107
  st.cache_data.clear()
108
- dk_raw, fd_raw, timestamp = init_stat_load()
109
- opp_dict = dict(zip(dk_raw.Team, dk_raw.Opp))
110
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
111
  for key in st.session_state.keys():
112
  del st.session_state[key]
@@ -116,13 +96,19 @@ with tab2:
116
  if data_var1 == 'User':
117
  raw_baselines = proj_dataframe
118
  elif data_var1 != 'User':
119
- raw_baselines = dk_raw
 
120
  elif site_var1 == 'Fanduel':
121
  if data_var1 == 'User':
122
  raw_baselines = proj_dataframe
123
  elif data_var1 != 'User':
124
- raw_baselines = fd_raw
125
- player_check = st.selectbox('Select player to create comps', options = dk_raw['Player'].unique(), key='dk_player')
 
 
 
 
 
126
  Salary_var = st.number_input('Acceptable +/- Salary range', min_value = 0, max_value = 1000, value = 300, step = 100)
127
  Median_var = st.number_input('Acceptable +/- Median range', min_value = 0, max_value = 10, value = 3, step = 1)
128
  pos_var1 = st.radio("Compare to all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_var1')
@@ -137,138 +123,234 @@ with tab2:
137
  team_var1 = raw_baselines.Team.values.tolist()
138
 
139
  with col2:
140
- proj_container = st.empty()
141
- display_container = st.empty()
142
- display_dl_container = st.empty()
143
- hold_container = st.empty()
144
- if site_var1 == 'Draftkings':
145
- if data_var1 == 'User':
146
- raw_baselines = proj_dataframe
147
- elif data_var1 != 'User':
148
- raw_baselines = dk_raw
149
- elif site_var1 == 'Fanduel':
150
- if data_var1 == 'User':
151
- raw_baselines = proj_dataframe
152
- elif data_var1 != 'User':
153
- raw_baselines = fd_raw
154
- if proj_file is not None:
155
- st.session_state.proj_display = proj_dataframe.copy()
156
- elif proj_file is None:
157
- st.session_state.proj_display = raw_baselines.copy()
158
  if st.button('Simulate appropriate pivots'):
159
- with hold_container:
160
-
161
- working_roo = raw_baselines
162
- if pos_var1 == 'All Positions':
163
- working_roo = working_roo
164
- elif pos_var1 != 'All Positions':
165
- working_roo = working_roo[working_roo['Position'].str.contains('|'.join(pos_var_list))]
166
- working_roo = working_roo[working_roo['Team'].isin(team_var1)]
167
  own_dict = dict(zip(working_roo.Player, working_roo.Own))
168
- min_dict = dict(zip(working_roo.Player, working_roo.Minutes))
169
  team_dict = dict(zip(working_roo.Player, working_roo.Team))
 
 
170
  total_sims = 1000
171
-
172
- player_var = working_roo.loc[working_roo['Player'] == player_check]
173
- player_var = player_var.reset_index()
174
-
175
- working_roo = working_roo[working_roo['Team'].isin(team_var1)]
176
- working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
177
- working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
178
-
179
- flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes']]
180
- flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
181
- flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
182
- flex_file['STD'] = (flex_file['Median']/4)
183
- flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
184
- hold_file = flex_file
185
- overall_file = flex_file
186
- salary_file = flex_file
187
-
188
- overall_players = overall_file[['Player']]
189
-
190
- for x in range(0,total_sims):
191
- salary_file[x] = salary_file['Salary']
192
-
193
- salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
194
- salary_file.astype('int').dtypes
195
-
196
- salary_file = salary_file.div(1000)
197
-
198
- for x in range(0,total_sims):
199
- overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
200
-
201
- overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
202
- overall_file.astype('int').dtypes
203
-
204
- players_only = hold_file[['Player']]
205
- raw_lineups_file = players_only
206
-
207
- for x in range(0,total_sims):
208
- maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
209
- raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
210
- players_only[x] = raw_lineups_file[x].rank(ascending=False)
211
-
212
- players_only=players_only.drop(['Player'], axis=1)
213
- players_only.astype('int').dtypes
214
-
215
- salary_2x_check = (overall_file - (salary_file*4))
216
- salary_3x_check = (overall_file - (salary_file*5))
217
- salary_4x_check = (overall_file - (salary_file*6))
218
- gpp_check = (overall_file - ((salary_file*5)+10))
219
-
220
- players_only['Average_Rank'] = players_only.mean(axis=1)
221
- players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
222
- players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
223
- players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
224
- players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
225
- players_only['3x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
226
- players_only['4x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
227
- players_only['5x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
228
- players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
229
-
230
- players_only['Player'] = hold_file[['Player']]
231
-
232
- final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
233
 
234
- final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
235
- final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
236
-
237
- final_Proj['Own'] = final_Proj['Player'].map(own_dict)
238
- final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
239
- final_Proj['Team'] = final_Proj['Player'].map(team_dict)
240
- final_Proj['Own'] = final_Proj['Own'].astype('float')
241
- final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True)
242
- final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
243
- final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100
244
- final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']
245
- final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
246
- final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
247
-
248
- final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%', 'Own', 'LevX', 'ValX']]
249
- final_Proj = final_Proj.set_index('Player')
250
- final_Proj = final_Proj.sort_values(by='Median', ascending=False)
251
-
252
- st.session_state.final_Proj = final_Proj
253
-
254
- hold_container = st.empty()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255
 
256
- with proj_container:
257
- proj_container = st.empty()
258
- if 'proj_display' in st.session_state:
259
- st.dataframe(st.session_state.proj_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
260
 
261
- with display_container:
262
- display_container = st.empty()
263
- if 'final_Proj' in st.session_state:
264
- st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265
 
266
- with display_dl_container:
267
- display_dl_container = st.empty()
268
- if 'final_Proj' in st.session_state:
269
- st.download_button(
270
- label="Export Tables",
271
- data=convert_df_to_csv(st.session_state.final_Proj),
272
- file_name='Custom_NBA_export.csv',
273
- mime='text/csv',
274
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import numpy as np
2
  import pandas as pd
3
  import streamlit as st
4
  import gspread
5
 
6
+ st.set_page_config(layout="wide")
7
+
8
  @st.cache_resource
9
  def init_conn():
10
+ scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
11
+
12
+ credentials = {
13
+ "type": "service_account",
14
+ "project_id": "model-sheets-connect",
15
+ "private_key_id": st.secrets['model_sheets_connect_pk'],
16
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
17
+ "client_email": "[email protected]",
18
+ "client_id": "100369174533302798535",
19
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
20
+ "token_uri": "https://oauth2.googleapis.com/token",
21
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
22
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
23
+ }
24
+
25
+ credentials2 = {
26
+ "type": "service_account",
27
+ "project_id": "sheets-api-connect-378620",
28
+ "private_key_id": st.secrets['sheets_api_connect_pk'],
29
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
30
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
31
+ "client_id": "106625872877651920064",
32
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
33
+ "token_uri": "https://oauth2.googleapis.com/token",
34
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
35
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
36
+ }
37
+
38
+ NBA_Data = st.secrets['NBA_Data']
39
+
40
+ gc = gspread.service_account_from_dict(credentials)
41
+ gc2 = gspread.service_account_from_dict(credentials2)
42
+
43
+ return gc, gc2, NBA_Data
44
+
45
+ gcservice_account, gcservice_account2, NBA_Data = init_conn()
46
+
47
+ player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}',
48
+ '6x%': '{:.2%}','GPP%': '{:.2%}'}
49
 
50
  @st.cache_resource(ttl = 300)
51
  def init_stat_load():
52
+ try:
53
+ sh = gcservice_account.open_by_url(NBA_Data)
54
+ worksheet = sh.worksheet('Player_Level_ROO')
55
+ raw_display = pd.DataFrame(worksheet.get_all_records())
56
+ raw_display = raw_display.rename(columns={"Minutes Proj": "Minutes"})
57
+ except:
58
+ sh = gcservice_account2.open_by_url(NBA_Data)
59
+ worksheet = sh.worksheet('Player_Level_ROO')
60
+ raw_display = pd.DataFrame(worksheet.get_all_records())
61
+ raw_display = raw_display.rename(columns={"Minutes Proj": "Minutes"})
62
+
63
+ raw_display = raw_display[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'Median', 'Own']]
 
 
 
64
  raw_display.replace("", 'Welp', inplace=True)
65
  raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
66
  raw_display = raw_display.loc[raw_display['Median'] > 0]
67
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
68
+ proj_raw = raw_display.sort_values(by='Median', ascending=False)
69
 
70
+ timestamp = proj_raw['timestamp'].iloc[0]
 
71
 
72
+ return proj_raw, timestamp
73
 
74
  @st.cache_data
75
  def convert_df_to_csv(df):
76
  return df.to_csv().encode('utf-8')
77
 
78
+ proj_raw, timestamp = init_stat_load()
 
79
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
80
 
81
+ tab1, tab2 = st.tabs(['Pivot Finder', 'Uploads and Info'])
82
 
83
  with tab1:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
  col1, col2 = st.columns([1, 9])
85
  with col1:
86
  st.info(t_stamp)
87
  if st.button("Load/Reset Data", key='reset1'):
88
  st.cache_data.clear()
89
+ proj_raw, timestamp = init_stat_load()
 
90
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
91
  for key in st.session_state.keys():
92
  del st.session_state[key]
 
96
  if data_var1 == 'User':
97
  raw_baselines = proj_dataframe
98
  elif data_var1 != 'User':
99
+ raw_baselines = proj_raw[proj_raw['site'] == 'Draftkings']
100
+ raw_baselines = raw_baselines[raw_baselines['slate'] == 'Main Slate']
101
  elif site_var1 == 'Fanduel':
102
  if data_var1 == 'User':
103
  raw_baselines = proj_dataframe
104
  elif data_var1 != 'User':
105
+ raw_baselines = proj_raw[proj_raw['site'] == 'Fanduel']
106
+ raw_baselines = raw_baselines[raw_baselines['slate'] == 'Main Slate']
107
+ check_seq = st.radio("Do you want to check a single player or the top 10 in ownership?", ('Single Player', 'Top X Owned'), key='check_seq')
108
+ if check_seq == 'Single Player':
109
+ player_check = st.selectbox('Select player to create comps', options = raw_baselines['Player'].unique(), key='dk_player')
110
+ elif check_seq == 'Top X Owned':
111
+ top_x_var = st.number_input('How many players would you like to check?', min_value = 1, max_value = 10, value = 5, step = 1)
112
  Salary_var = st.number_input('Acceptable +/- Salary range', min_value = 0, max_value = 1000, value = 300, step = 100)
113
  Median_var = st.number_input('Acceptable +/- Median range', min_value = 0, max_value = 10, value = 3, step = 1)
114
  pos_var1 = st.radio("Compare to all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_var1')
 
123
  team_var1 = raw_baselines.Team.values.tolist()
124
 
125
  with col2:
126
+ placeholder = st.empty()
127
+ displayholder = st.empty()
128
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  if st.button('Simulate appropriate pivots'):
130
+ with placeholder:
131
+ if site_var1 == 'Draftkings':
132
+ working_roo = raw_baselines
133
+ working_roo.replace('', 0, inplace=True)
134
+ if site_var1 == 'Fanduel':
135
+ working_roo = raw_baselines
136
+ working_roo.replace('', 0, inplace=True)
137
+
138
  own_dict = dict(zip(working_roo.Player, working_roo.Own))
 
139
  team_dict = dict(zip(working_roo.Player, working_roo.Team))
140
+ pos_dict = dict(zip(working_roo.Player, working_roo.Position))
141
+ min_dict = dict(zip(working_roo.Player, working_roo.Minutes))
142
  total_sims = 1000
143
+
144
+ if check_seq == 'Single Player':
145
+ player_var = working_roo.loc[working_roo['Player'] == player_check]
146
+ player_var = player_var.reset_index()
147
+ working_roo = working_roo[working_roo['Position'].isin(pos_var_list)]
148
+ working_roo = working_roo[working_roo['Team'].isin(team_var1)]
149
+ working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
150
+ working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
152
+ flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes']]
153
+ flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
154
+ flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
155
+ flex_file['STD'] = (flex_file['Median']/4)
156
+ flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
157
+ hold_file = flex_file.copy()
158
+ overall_file = flex_file.copy()
159
+ salary_file = flex_file.copy()
160
+
161
+ overall_players = overall_file[['Player']]
162
+
163
+ for x in range(0,total_sims):
164
+ salary_file[x] = salary_file['Salary']
165
+
166
+ salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
167
+
168
+ salary_file = salary_file.div(1000)
169
+
170
+ for x in range(0,total_sims):
171
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
172
+
173
+ overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
174
+
175
+ players_only = hold_file[['Player']]
176
+ raw_lineups_file = players_only
177
+
178
+ for x in range(0,total_sims):
179
+ maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
180
+ raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
181
+ players_only[x] = raw_lineups_file[x].rank(ascending=False)
182
+
183
+ players_only=players_only.drop(['Player'], axis=1)
184
+
185
+ salary_2x_check = (overall_file - (salary_file*4))
186
+ salary_3x_check = (overall_file - (salary_file*5))
187
+ salary_4x_check = (overall_file - (salary_file*6))
188
+ gpp_check = (overall_file - ((salary_file*5)+10))
189
+
190
+ players_only['Average_Rank'] = players_only.mean(axis=1)
191
+ players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
192
+ players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
193
+ players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
194
+ players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
195
+ players_only['3x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
196
+ players_only['4x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
197
+ players_only['5x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
198
+ players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
199
+
200
+ players_only['Player'] = hold_file[['Player']]
201
+
202
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
203
+
204
+ final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
205
+ final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
206
+
207
+ final_Proj['Own'] = final_Proj['Player'].map(own_dict)
208
+ final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
209
+ final_Proj['Team'] = final_Proj['Player'].map(team_dict)
210
+ final_Proj['Own'] = final_Proj['Own'].astype('float')
211
+ final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True)
212
+ final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
213
+ final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100
214
+ final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']
215
+ final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
216
+ final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
217
+
218
+ final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%', 'Own', 'LevX', 'ValX']]
219
+ final_Proj = final_Proj.set_index('Player')
220
+ final_Proj = final_Proj.sort_values(by='Median', ascending=False)
221
+
222
+ st.session_state.final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
223
+
224
+ elif check_seq == 'Top X Owned':
225
+ if pos_var1 == 'Specific Positions':
226
+ raw_baselines = raw_baselines[raw_baselines['Position'].isin(pos_var_list)]
227
+ player_check = raw_baselines['Player'].head(top_x_var).tolist()
228
+ final_proj_list = []
229
+ for players in player_check:
230
+ players_pos = pos_dict[players]
231
+ player_var = working_roo.loc[working_roo['Player'] == players]
232
+ player_var = player_var.reset_index()
233
+ working_roo_temp = working_roo[working_roo['Position'] == players_pos]
234
+ working_roo_temp = working_roo_temp[working_roo_temp['Team'].isin(team_var1)]
235
+ working_roo_temp = working_roo_temp.loc[(working_roo_temp['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo_temp['Salary'] <= player_var['Salary'][0] + Salary_var)]
236
+ working_roo_temp = working_roo_temp.loc[(working_roo_temp['Median'] >= player_var['Median'][0] - Median_var) & (working_roo_temp['Median'] <= player_var['Median'][0] + Median_var)]
237
+
238
+ flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes']]
239
+ flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
240
+ flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
241
+ flex_file['STD'] = (flex_file['Median']/4)
242
+ flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
243
+ hold_file = flex_file.copy()
244
+ overall_file = flex_file.copy()
245
+ salary_file = flex_file.copy()
246
+
247
+ overall_players = overall_file[['Player']]
248
+
249
+ for x in range(0,total_sims):
250
+ salary_file[x] = salary_file['Salary']
251
+
252
+ salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
253
 
254
+ salary_file = salary_file.div(1000)
 
 
 
255
 
256
+ for x in range(0,total_sims):
257
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
258
+
259
+ overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
260
+
261
+ players_only = hold_file[['Player']]
262
+ raw_lineups_file = players_only
263
+
264
+ for x in range(0,total_sims):
265
+ maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
266
+ raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
267
+ players_only[x] = raw_lineups_file[x].rank(ascending=False)
268
+
269
+ players_only=players_only.drop(['Player'], axis=1)
270
+
271
+ salary_2x_check = (overall_file - (salary_file*4))
272
+ salary_3x_check = (overall_file - (salary_file*5))
273
+ salary_4x_check = (overall_file - (salary_file*6))
274
+ gpp_check = (overall_file - ((salary_file*5)+10))
275
+
276
+ players_only['Average_Rank'] = players_only.mean(axis=1)
277
+ players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
278
+ players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
279
+ players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
280
+ players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
281
+ players_only['3x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
282
+ players_only['4x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
283
+ players_only['5x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
284
+ players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
285
+
286
+ players_only['Player'] = hold_file[['Player']]
287
+
288
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
289
 
290
+ final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
291
+ final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
292
+
293
+ final_Proj['Own'] = final_Proj['Player'].map(own_dict)
294
+ final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
295
+ final_Proj['Team'] = final_Proj['Player'].map(team_dict)
296
+ final_Proj['Own'] = final_Proj['Own'].astype('float')
297
+ final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True)
298
+ final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
299
+ final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100
300
+ final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']
301
+ final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
302
+ final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
303
+
304
+ final_Proj = final_Proj[['Player', 'Pivot_source', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
305
+
306
+ final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
307
+ final_proj_list.append(final_Proj)
308
+ st.write(f'finished run for {players}')
309
+
310
+ # Concatenate all the final_Proj dataframes
311
+ final_Proj_combined = pd.concat(final_proj_list)
312
+ final_Proj_combined = final_Proj_combined.sort_values(by='LevX', ascending=False)
313
+ final_Proj_combined = final_Proj_combined[final_Proj_combined['Player'] != final_Proj_combined['Pivot_source']]
314
+ st.session_state.final_Proj = final_Proj_combined.reset_index(drop=True) # Assign the combined dataframe back to final_Proj
315
+
316
+ placeholder.empty()
317
+
318
+ with displayholder.container():
319
+ if 'final_Proj' in st.session_state:
320
+ st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
321
+
322
+ st.download_button(
323
+ label="Export Tables",
324
+ data=convert_df_to_csv(st.session_state.final_Proj),
325
+ file_name='NFL_pivot_export.csv',
326
+ mime='text/csv',
327
+ )
328
+ else:
329
+ st.write("Run some pivots my dude/dudette")
330
+
331
+ with tab2:
332
+ st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'Median', 'Own'.")
333
+ col1, col2 = st.columns([1, 5])
334
+
335
+ with col1:
336
+ proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
337
+
338
+ if proj_file is not None:
339
+ try:
340
+ proj_dataframe = pd.read_csv(proj_file)
341
+ try:
342
+ proj_dataframe = proj_dataframe.replace(',','', regex=True)
343
+ proj_dataframe['Salary'] = proj_dataframe['Salary'].astype(int)
344
+ except:
345
+ pass
346
+ except:
347
+ proj_dataframe = pd.read_excel(proj_file)
348
+ try:
349
+ proj_dataframe = proj_dataframe.replace(',','', regex=True)
350
+ proj_dataframe['Salary'] = proj_dataframe['Salary'].astype(int)
351
+ except:
352
+ pass
353
+ with col2:
354
+ if proj_file is not None:
355
+ st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
356
+