Spaces:
Running
Running
James McCool
Implement conditional data export logic in app.py: enhance the data export functionality by incorporating slate type (Regular or Showdown) for both Draftkings and Fanduel, ensuring accurate player ID mapping and improving data handling during export.
38762a9
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
import gspread | |
import pymongo | |
st.set_page_config(layout="wide") | |
def init_conn(): | |
uri = st.secrets['mongo_uri'] | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client["NBA_DFS"] | |
return db | |
db = init_conn() | |
dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
dk_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
fd_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'} | |
st.markdown(""" | |
<style> | |
/* Tab styling */ | |
.stTabs [data-baseweb="tab-list"] { | |
gap: 8px; | |
padding: 4px; | |
} | |
.stTabs [data-baseweb="tab"] { | |
height: 50px; | |
white-space: pre-wrap; | |
background-color: #DAA520; | |
color: white; | |
border-radius: 10px; | |
gap: 1px; | |
padding: 10px 20px; | |
font-weight: bold; | |
transition: all 0.3s ease; | |
} | |
.stTabs [aria-selected="true"] { | |
background-color: #DAA520; | |
border: 3px solid #FFD700; | |
color: white; | |
} | |
.stTabs [data-baseweb="tab"]:hover { | |
background-color: #FFD700; | |
cursor: pointer; | |
} | |
</style>""", unsafe_allow_html=True) | |
def load_overall_stats(): | |
collection = db["DK_Player_Stats"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT', | |
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']] | |
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}) | |
raw_display = raw_display.loc[raw_display['Median'] > 0] | |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore') | |
dk_raw = raw_display.sort_values(by='Median', ascending=False) | |
collection = db["FD_Player_Stats"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT', | |
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']] | |
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}) | |
raw_display = raw_display.loc[raw_display['Median'] > 0] | |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore') | |
fd_raw = raw_display.sort_values(by='Median', ascending=False) | |
collection = db["Secondary_DK_Player_Stats"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT', | |
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']] | |
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}) | |
raw_display = raw_display.loc[raw_display['Median'] > 0] | |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore') | |
dk_raw_sec = raw_display.sort_values(by='Median', ascending=False) | |
collection = db["Secondary_FD_Player_Stats"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT', | |
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']] | |
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}) | |
raw_display = raw_display.loc[raw_display['Median'] > 0] | |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore') | |
fd_raw_sec = raw_display.sort_values(by='Median', ascending=False) | |
collection = db["Player_SD_Range_Of_Outcomes"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', | |
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']] | |
raw_display = raw_display.rename(columns={"player_id": "player_ID"}) | |
raw_display = raw_display.loc[raw_display['Median'] > 0] | |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore') | |
sd_raw = raw_display.sort_values(by='Median', ascending=False) | |
print(sd_raw.head(10)) | |
collection = db["Player_Range_Of_Outcomes"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', | |
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_ID']] | |
raw_display = raw_display.loc[raw_display['Median'] > 0] | |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore') | |
roo_raw = raw_display.sort_values(by='Median', ascending=False) | |
timestamp = raw_display['timestamp'].values[0] | |
return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp | |
def init_DK_lineups(slate_desig: str): | |
if slate_desig == 'Main Slate': | |
collection = db['DK_NBA_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db["DK_NBA_seed_frame"] | |
cursor = collection.find().limit(10000) | |
elif slate_desig == 'Secondary': | |
collection = db['DK_NBA_Secondary_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db["DK_NBA_Secondary_seed_frame"] | |
cursor = collection.find().limit(10000) | |
elif slate_desig == 'Auxiliary': | |
collection = db['DK_NBA_Auxiliary_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db["DK_NBA_Auxiliary_seed_frame"] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX'] | |
for col in dict_columns: | |
raw_display[col] = raw_display[col].map(names_dict) | |
DK_seed = raw_display.to_numpy() | |
return DK_seed | |
def init_DK_SD_lineups(slate_desig: str): | |
if slate_desig == 'Main Slate': | |
collection = db["DK_NBA_SD_seed_frame"] | |
elif slate_desig == 'Secondary': | |
collection = db["DK_NBA_Secondary_SD_seed_frame"] | |
elif slate_desig == 'Auxiliary': | |
collection = db["DK_NBA_Auxiliary_SD_seed_frame"] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
DK_seed = raw_display.to_numpy() | |
return DK_seed | |
def init_FD_lineups(slate_desig: str): | |
if slate_desig == 'Main Slate': | |
collection = db['FD_NBA_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db["FD_NBA_seed_frame"] | |
cursor = collection.find().limit(10000) | |
elif slate_desig == 'Secondary': | |
collection = db['FD_NBA_Secondary_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db["FD_NBA_Secondary_seed_frame"] | |
cursor = collection.find().limit(10000) | |
elif slate_desig == 'Auxiliary': | |
collection = db['FD_NBA_Auxiliary_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db["FD_NBA_Auxiliary_seed_frame"] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1'] | |
for col in dict_columns: | |
raw_display[col] = raw_display[col].map(names_dict) | |
FD_seed = raw_display.to_numpy() | |
return FD_seed | |
def init_FD_SD_lineups(slate_desig: str): | |
if slate_desig == 'Main Slate': | |
collection = db["FD_NBA_SD_seed_frame"] | |
elif slate_desig == 'Secondary': | |
collection = db["FD_NBA_Secondary_SD_seed_frame"] | |
elif slate_desig == 'Auxiliary': | |
collection = db["FD_NBA_Auxiliary_SD_seed_frame"] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
DK_seed = raw_display.to_numpy() | |
return DK_seed | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
def convert_df(array): | |
array = pd.DataFrame(array, columns=column_names) | |
return array.to_csv().encode('utf-8') | |
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp = load_overall_stats() | |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary)) | |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID)) | |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary)) | |
id_dict_sd = dict(zip(sd_raw.Player, sd_raw.player_ID)) | |
dk_lineups = pd.DataFrame(columns=dk_columns) | |
dk_sd_lineups = pd.DataFrame(columns=dk_sd_columns) | |
fd_lineups = pd.DataFrame(columns=fd_columns) | |
fd_sd_lineups = pd.DataFrame(columns=fd_sd_columns) | |
t_stamp = f"Last Update: " + str(timestamp) + f" CST" | |
tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals']) | |
with tab1: | |
with st.expander("Info and Filters"): | |
with st.container(): | |
st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile") | |
with st.container(): | |
# First row - timestamp and reset button | |
col1, col2 = st.columns([3, 1]) | |
with col1: | |
st.info(t_stamp) | |
with col2: | |
if st.button("Load/Reset Data", key='reset1'): | |
st.cache_data.clear() | |
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp = load_overall_stats() | |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary)) | |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID)) | |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary)) | |
id_dict_sd = dict(zip(sd_raw.Player, sd_raw.player_ID)) | |
dk_lineups = pd.DataFrame(columns=dk_columns) | |
dk_sd_lineups = pd.DataFrame(columns=dk_sd_columns) | |
fd_lineups = pd.DataFrame(columns=fd_columns) | |
fd_sd_lineups = pd.DataFrame(columns=fd_sd_columns) | |
t_stamp = f"Last Update: " + str(timestamp) + f" CST" | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
col1, col2, col3, col4, col5 = st.columns(5) | |
with col1: | |
view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2') | |
with col2: | |
slate_type_var2 = st.radio("What slate type are you working with?", ('Regular', 'Showdown'), key='slate_type_var2') | |
with col3: | |
site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2') | |
# Process site selection | |
if site_var2 == 'Draftkings': | |
if slate_type_var2 == 'Regular': | |
site_baselines = roo_raw[roo_raw['site'] == 'Draftkings'] | |
elif slate_type_var2 == 'Showdown': | |
site_baselines = sd_raw[sd_raw['site'] == 'Draftkings'] | |
elif site_var2 == 'Fanduel': | |
if slate_type_var2 == 'Regular': | |
site_baselines = roo_raw[roo_raw['site'] == 'Fanduel'] | |
elif slate_type_var2 == 'Showdown': | |
site_baselines = sd_raw[sd_raw['site'] == 'Fanduel'] | |
with col4: | |
slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary'), key='slate_split') | |
if slate_split == 'Main Slate': | |
if slate_type_var2 == 'Regular': | |
raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate'] | |
elif slate_type_var2 == 'Showdown': | |
raw_baselines = site_baselines[site_baselines['slate'] == 'Showdown #1'] | |
elif slate_split == 'Secondary': | |
if slate_type_var2 == 'Regular': | |
raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate'] | |
elif slate_type_var2 == 'Showdown': | |
raw_baselines = site_baselines[site_baselines['slate'] == 'Showdown #2'] | |
with col5: | |
split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2') | |
if split_var2 == 'Specific Games': | |
team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2') | |
else: | |
team_var2 = raw_baselines.Team.values.tolist() | |
pos_var2 = st.selectbox('Position Filter', options=['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2') | |
col1, col2 = st.columns(2) | |
with col1: | |
low_salary = st.number_input('Enter Lowest Salary', min_value=300, max_value=15000, value=300, step=100, key='low_salary') | |
with col2: | |
high_salary = st.number_input('Enter Highest Salary', min_value=300, max_value=25000, value=25000, step=100, key='high_salary') | |
display_container_1 = st.empty() | |
display_dl_container_1 = st.empty() | |
display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)] | |
display_proj = display_proj[display_proj['Salary'].between(low_salary, high_salary)] | |
if view_var2 == 'Advanced': | |
display_proj = display_proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', | |
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']] | |
elif view_var2 == 'Simple': | |
display_proj = display_proj[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']] | |
export_data = display_proj.copy() | |
# display_proj = display_proj.set_index('Player') | |
st.session_state.display_proj = display_proj.set_index('Player', drop=True) | |
with display_container_1: | |
display_container = st.empty() | |
if 'display_proj' in st.session_state: | |
if pos_var2 == 'All': | |
st.session_state.display_proj = st.session_state.display_proj | |
elif pos_var2 != 'All': | |
st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)] | |
st.dataframe(st.session_state.display_proj.style.set_properties(**{'font-size': '6pt'}).background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), | |
height=1000, use_container_width = True) | |
with display_dl_container_1: | |
display_dl_container = st.empty() | |
if 'display_proj' in st.session_state: | |
st.download_button( | |
label="Export Tables", | |
data=convert_df_to_csv(export_data), | |
file_name='NBA_ROO_export.csv', | |
mime='text/csv', | |
) | |
with tab2: | |
with st.expander("Info and Filters"): | |
if st.button("Load/Reset Data", key='reset2'): | |
st.cache_data.clear() | |
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, timestamp = load_overall_stats() | |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary)) | |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID)) | |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary)) | |
id_dict_sd = dict(zip(sd_raw.Player, sd_raw.player_ID)) | |
dk_lineups = pd.DataFrame(columns=dk_columns) | |
dk_sd_lineups = pd.DataFrame(columns=dk_sd_columns) | |
fd_lineups = pd.DataFrame(columns=fd_columns) | |
fd_sd_lineups = pd.DataFrame(columns=fd_sd_columns) | |
t_stamp = f"Last Update: " + str(timestamp) + f" CST" | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
col1, col2, col3, col4, col5 = st.columns(5) | |
with col1: | |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary')) | |
with col2: | |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel')) | |
if 'working_seed' in st.session_state: | |
del st.session_state['working_seed'] | |
with col3: | |
slate_type_var1 = st.radio("What slate type are you working with?", ('Regular', 'Showdown')) | |
with col4: | |
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1) | |
with col5: | |
if site_var1 == 'Draftkings': | |
if slate_type_var1 == 'Regular': | |
column_names = dk_columns | |
elif slate_type_var1 == 'Showdown': | |
column_names = dk_sd_columns | |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') | |
if player_var1 == 'Specific Players': | |
player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique()) | |
elif player_var1 == 'Full Slate': | |
player_var2 = dk_raw.Player.values.tolist() | |
elif site_var1 == 'Fanduel': | |
if slate_type_var1 == 'Regular': | |
column_names = fd_columns | |
elif slate_type_var1 == 'Showdown': | |
column_names = fd_sd_columns | |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') | |
if player_var1 == 'Specific Players': | |
player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique()) | |
elif player_var1 == 'Full Slate': | |
player_var2 = fd_raw.Player.values.tolist() | |
if st.button("Prepare data export", key='data_export'): | |
if site_var1 == 'Draftkings': | |
if slate_type_var1 == 'Regular': | |
data_export = init_DK_lineups(slate_var1) | |
for col_idx in range(8): | |
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]]) | |
elif slate_type_var1 == 'Showdown': | |
data_export = init_DK_SD_lineups(slate_var1) | |
for col_idx in range(5): | |
data_export[:, col_idx] = np.array([id_dict_sd.get(player, player) for player in data_export[:, col_idx]]) | |
elif site_var1 == 'Fanduel': | |
if slate_type_var1 == 'Regular': | |
data_export = init_FD_lineups(slate_var1) | |
for col_idx in range(9): | |
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]]) | |
elif slate_type_var1 == 'Showdown': | |
data_export = init_FD_SD_lineups(slate_var1) | |
for col_idx in range(5): | |
data_export[:, col_idx] = np.array([id_dict_sd.get(player, player) for player in data_export[:, col_idx]]) | |
st.download_button( | |
label="Export optimals set", | |
data=convert_df(data_export), | |
file_name='NBA_optimals_export.csv', | |
mime='text/csv', | |
) | |
if site_var1 == 'Draftkings': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = st.session_state.working_seed | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
if slate_type_var1 == 'Regular': | |
st.session_state.working_seed = init_DK_lineups(slate_var1) | |
elif slate_type_var1 == 'Showdown': | |
st.session_state.working_seed = init_DK_SD_lineups(slate_var1) | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
if slate_type_var1 == 'Regular': | |
st.session_state.working_seed = init_DK_lineups(slate_var1) | |
elif slate_type_var1 == 'Showdown': | |
st.session_state.working_seed = init_DK_SD_lineups(slate_var1) | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif site_var1 == 'Fanduel': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = st.session_state.working_seed | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
if slate_type_var1 == 'Regular': | |
st.session_state.working_seed = init_FD_lineups(slate_var1) | |
elif slate_type_var1 == 'Showdown': | |
st.session_state.working_seed = init_FD_SD_lineups(slate_var1) | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
if slate_type_var1 == 'Regular': | |
st.session_state.working_seed = init_FD_lineups(slate_var1) | |
elif slate_type_var1 == 'Showdown': | |
st.session_state.working_seed = init_FD_SD_lineups(slate_var1) | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
export_file = st.session_state.data_export_display.copy() | |
if site_var1 == 'Draftkings': | |
if slate_type_var1 == 'Regular': | |
for col_idx in range(8): | |
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict) | |
elif slate_type_var1 == 'Showdown': | |
for col_idx in range(5): | |
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict_sd) | |
elif site_var1 == 'Fanduel': | |
if slate_type_var1 == 'Regular': | |
for col_idx in range(9): | |
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict) | |
elif slate_type_var1 == 'Showdown': | |
for col_idx in range(5): | |
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict_sd) | |
with st.container(): | |
if st.button("Reset Optimals", key='reset3'): | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
if site_var1 == 'Draftkings': | |
if slate_type_var1 == 'Regular': | |
st.session_state.working_seed = dk_lineups.copy() | |
elif slate_type_var1 == 'Showdown': | |
st.session_state.working_seed = dk_sd_lineups.copy() | |
elif site_var1 == 'Fanduel': | |
if slate_type_var1 == 'Regular': | |
st.session_state.working_seed = fd_lineups.copy() | |
elif slate_type_var1 == 'Showdown': | |
st.session_state.working_seed = fd_sd_lineups.copy() | |
if 'data_export_display' in st.session_state: | |
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True) | |
st.download_button( | |
label="Export display optimals", | |
data=convert_df(export_file), | |
file_name='NBA_display_optimals.csv', | |
mime='text/csv', | |
) | |
with st.container(): | |
if 'working_seed' in st.session_state: | |
# Create a new dataframe with summary statistics | |
if site_var1 == 'Draftkings': | |
if slate_type_var1 == 'Regular': | |
summary_df = pd.DataFrame({ | |
'Metric': ['Min', 'Average', 'Max', 'STDdev'], | |
'Salary': [ | |
np.min(st.session_state.working_seed[:,8]), | |
np.mean(st.session_state.working_seed[:,8]), | |
np.max(st.session_state.working_seed[:,8]), | |
np.std(st.session_state.working_seed[:,8]) | |
], | |
'Proj': [ | |
np.min(st.session_state.working_seed[:,9]), | |
np.mean(st.session_state.working_seed[:,9]), | |
np.max(st.session_state.working_seed[:,9]), | |
np.std(st.session_state.working_seed[:,9]) | |
], | |
'Own': [ | |
np.min(st.session_state.working_seed[:,14]), | |
np.mean(st.session_state.working_seed[:,14]), | |
np.max(st.session_state.working_seed[:,14]), | |
np.std(st.session_state.working_seed[:,14]) | |
] | |
}) | |
elif slate_type_var1 == 'Showdown': | |
summary_df = pd.DataFrame({ | |
'Metric': ['Min', 'Average', 'Max', 'STDdev'], | |
'Salary': [ | |
np.min(st.session_state.working_seed[:,6]), | |
np.mean(st.session_state.working_seed[:,6]), | |
np.max(st.session_state.working_seed[:,6]), | |
np.std(st.session_state.working_seed[:,6]) | |
], | |
'Proj': [ | |
np.min(st.session_state.working_seed[:,7]), | |
np.mean(st.session_state.working_seed[:,7]), | |
np.max(st.session_state.working_seed[:,7]), | |
np.std(st.session_state.working_seed[:,7]) | |
], | |
'Own': [ | |
np.min(st.session_state.working_seed[:,12]), | |
np.mean(st.session_state.working_seed[:,12]), | |
np.max(st.session_state.working_seed[:,12]), | |
np.std(st.session_state.working_seed[:,12]) | |
] | |
}) | |
elif site_var1 == 'Fanduel': | |
if slate_type_var1 == 'Regular': | |
summary_df = pd.DataFrame({ | |
'Metric': ['Min', 'Average', 'Max', 'STDdev'], | |
'Salary': [ | |
np.min(st.session_state.working_seed[:,9]), | |
np.mean(st.session_state.working_seed[:,9]), | |
np.max(st.session_state.working_seed[:,9]), | |
np.std(st.session_state.working_seed[:,9]) | |
], | |
'Proj': [ | |
np.min(st.session_state.working_seed[:,10]), | |
np.mean(st.session_state.working_seed[:,10]), | |
np.max(st.session_state.working_seed[:,10]), | |
np.std(st.session_state.working_seed[:,10]) | |
], | |
'Own': [ | |
np.min(st.session_state.working_seed[:,15]), | |
np.mean(st.session_state.working_seed[:,15]), | |
np.max(st.session_state.working_seed[:,15]), | |
np.std(st.session_state.working_seed[:,15]) | |
] | |
}) | |
elif slate_type_var1 == 'Showdown': | |
summary_df = pd.DataFrame({ | |
'Metric': ['Min', 'Average', 'Max', 'STDdev'], | |
'Salary': [ | |
np.min(st.session_state.working_seed[:,6]), | |
np.mean(st.session_state.working_seed[:,6]), | |
np.max(st.session_state.working_seed[:,6]), | |
np.std(st.session_state.working_seed[:,6]) | |
], | |
'Proj': [ | |
np.min(st.session_state.working_seed[:,7]), | |
np.mean(st.session_state.working_seed[:,7]), | |
np.max(st.session_state.working_seed[:,7]), | |
np.std(st.session_state.working_seed[:,7]) | |
], | |
'Own': [ | |
np.min(st.session_state.working_seed[:,12]), | |
np.mean(st.session_state.working_seed[:,12]), | |
np.max(st.session_state.working_seed[:,12]), | |
np.std(st.session_state.working_seed[:,12]) | |
] | |
}) | |
# Set the index of the summary dataframe as the "Metric" column | |
summary_df = summary_df.set_index('Metric') | |
# Display the summary dataframe | |
st.subheader("Optimal Statistics") | |
st.dataframe(summary_df.style.format({ | |
'Salary': '{:.2f}', | |
'Proj': '{:.2f}', | |
'Own': '{:.2f}' | |
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True) | |
with st.container(): | |
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"]) | |
with tab1: | |
if 'data_export_display' in st.session_state: | |
if slate_type_var1 == 'Regular': | |
if site_var1 == 'Draftkings': | |
player_columns = st.session_state.data_export_display.iloc[:, :8] | |
elif site_var1 == 'Fanduel': | |
player_columns = st.session_state.data_export_display.iloc[:, :9] | |
elif slate_type_var1 == 'Showdown': | |
if site_var1 == 'Draftkings': | |
player_columns = st.session_state.data_export_display.iloc[:, :5] | |
elif site_var1 == 'Fanduel': | |
player_columns = st.session_state.data_export_display.iloc[:, :5] | |
# Flatten the DataFrame and count unique values | |
value_counts = player_columns.values.flatten().tolist() | |
value_counts = pd.Series(value_counts).value_counts() | |
percentages = (value_counts / lineup_num_var * 100).round(2) | |
# Create a DataFrame with the results | |
summary_df = pd.DataFrame({ | |
'Player': value_counts.index, | |
'Salary': [salary_dict.get(player, player) for player in value_counts.index], | |
'Frequency': value_counts.values, | |
'Percentage': percentages.values | |
}) | |
# Sort by frequency in descending order | |
summary_df = summary_df.sort_values('Frequency', ascending=False) | |
# Display the table | |
st.write("Player Frequency Table:") | |
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True) | |
st.download_button( | |
label="Export player frequency", | |
data=convert_df_to_csv(summary_df), | |
file_name='NBA_player_frequency.csv', | |
mime='text/csv', | |
) | |
with tab2: | |
if 'working_seed' in st.session_state: | |
if slate_type_var1 == 'Regular': | |
if site_var1 == 'Draftkings': | |
player_columns = st.session_state.working_seed[:, :8] | |
elif site_var1 == 'Fanduel': | |
player_columns = st.session_state.working_seed[:, :9] | |
elif slate_type_var1 == 'Showdown': | |
if site_var1 == 'Draftkings': | |
player_columns = st.session_state.working_seed[:, :5] | |
elif site_var1 == 'Fanduel': | |
player_columns = st.session_state.working_seed[:, :5] | |
# Flatten the DataFrame and count unique values | |
value_counts = player_columns.flatten().tolist() | |
value_counts = pd.Series(value_counts).value_counts() | |
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2) | |
# Create a DataFrame with the results | |
summary_df = pd.DataFrame({ | |
'Player': value_counts.index, | |
'Salary': [salary_dict.get(player, player) for player in value_counts.index], | |
'Frequency': value_counts.values, | |
'Percentage': percentages.values | |
}) | |
# Sort by frequency in descending order | |
summary_df = summary_df.sort_values('Frequency', ascending=False) | |
# Display the table | |
st.write("Seed Frame Frequency Table:") | |
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True) | |
st.download_button( | |
label="Export seed frame frequency", | |
data=convert_df_to_csv(summary_df), | |
file_name='NBA_seed_frame_frequency.csv', | |
mime='text/csv', | |
) | |