James McCool commited on
Commit
023a185
·
1 Parent(s): 4723d1e

Refactor data export logic in app.py: streamline the export process by removing redundant mapping for player position columns and ensuring accurate filtering of entries based on salary range. Update Portfolio Manager exports to reflect these changes, enhancing data clarity and user experience.

Browse files
Files changed (1) hide show
  1. app.py +22 -43
app.py CHANGED
@@ -627,6 +627,8 @@ with tab2:
627
  data_export[col_idx] = data_export[col_idx].map(id_dict)
628
  elif slate_type_var1 == 'Showdown':
629
  data_export[col_idx] = data_export[col_idx].map(fd_id_dict_sd)
 
 
630
  reg_opt_col, pm_opt_col = st.columns(2)
631
  with reg_opt_col:
632
  st.download_button(
@@ -662,36 +664,17 @@ with tab2:
662
  map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
663
  for col_idx in map_columns:
664
  data_export[col_idx] = data_export[col_idx].map(id_dict)
 
 
665
  st.download_button(
666
  label="Portfolio Manager Export (IDs)",
667
- data=convert_pm_df(data_export),
668
  file_name='NBA_optimals_export.csv',
669
  mime='text/csv',
670
  )
671
-
672
- if site_var2 == 'Draftkings':
673
- if slate_type_var1 == 'Regular':
674
- if league_var == 'NBA':
675
- map_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
676
- elif league_var == 'WNBA':
677
- map_columns = ['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL']
678
- elif slate_type_var1 == 'Showdown':
679
- map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
680
- for col_idx in map_columns:
681
- name_export[col_idx] = name_export[col_idx].map(id_dict)
682
- elif site_var2 == 'Fanduel':
683
- if slate_type_var1 == 'Regular':
684
- if league_var == 'NBA':
685
- map_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'C2', 'UTIL']
686
- elif league_var == 'WNBA':
687
- map_columns = ['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4']
688
- elif slate_type_var1 == 'Showdown':
689
- map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
690
- for col_idx in map_columns:
691
- name_export[col_idx] = name_export[col_idx].map(id_dict)
692
  st.download_button(
693
  label="Portfolio Manager Export (Names)",
694
- data=convert_pm_df(name_export),
695
  file_name='NBA_optimals_export.csv',
696
  mime='text/csv',
697
  )
@@ -730,7 +713,10 @@ with tab2:
730
 
731
  name_export = name_export[name_export['salary'] >= salary_min_var]
732
  name_export = name_export[name_export['salary'] <= salary_max_var]
733
-
 
 
 
734
  reg_opt_col, pm_opt_col = st.columns(2)
735
  with reg_opt_col:
736
  st.download_button(
@@ -762,32 +748,25 @@ with tab2:
762
  data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
763
  elif slate_type_var1 == 'Showdown':
764
  data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
 
 
 
 
 
 
 
 
 
 
765
  st.download_button(
766
  label="Portfolio Manager Export (IDs)",
767
- data=convert_pm_df(data_export),
768
  file_name='NBA_optimals_export.csv',
769
  mime='text/csv',
770
  )
771
-
772
- if site_var2 == 'Draftkings':
773
- if slate_type_var1 == 'Regular':
774
- if league_var == 'NBA':
775
- name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
776
- elif league_var == 'WNBA':
777
- name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
778
- elif slate_type_var1 == 'Showdown':
779
- name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
780
- elif site_var2 == 'Fanduel':
781
- if slate_type_var1 == 'Regular':
782
- if league_var == 'NBA':
783
- name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
784
- elif league_var == 'WNBA':
785
- name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
786
- elif slate_type_var1 == 'Showdown':
787
- name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
788
  st.download_button(
789
  label="Portfolio Manager Export (Names)",
790
- data=convert_pm_df(name_export),
791
  file_name='NBA_optimals_export.csv',
792
  mime='text/csv',
793
  )
 
627
  data_export[col_idx] = data_export[col_idx].map(id_dict)
628
  elif slate_type_var1 == 'Showdown':
629
  data_export[col_idx] = data_export[col_idx].map(fd_id_dict_sd)
630
+ name_export = name_export
631
+ data_export = data_export
632
  reg_opt_col, pm_opt_col = st.columns(2)
633
  with reg_opt_col:
634
  st.download_button(
 
664
  map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
665
  for col_idx in map_columns:
666
  data_export[col_idx] = data_export[col_idx].map(id_dict)
667
+ pm_name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
668
+ pm_data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
669
  st.download_button(
670
  label="Portfolio Manager Export (IDs)",
671
+ data=convert_pm_df(pm_data_export),
672
  file_name='NBA_optimals_export.csv',
673
  mime='text/csv',
674
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
675
  st.download_button(
676
  label="Portfolio Manager Export (Names)",
677
+ data=convert_pm_df(pm_name_export),
678
  file_name='NBA_optimals_export.csv',
679
  mime='text/csv',
680
  )
 
713
 
714
  name_export = name_export[name_export['salary'] >= salary_min_var]
715
  name_export = name_export[name_export['salary'] <= salary_max_var]
716
+
717
+ data_export = data_export
718
+ name_export = name_export
719
+
720
  reg_opt_col, pm_opt_col = st.columns(2)
721
  with reg_opt_col:
722
  st.download_button(
 
748
  data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
749
  elif slate_type_var1 == 'Showdown':
750
  data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
751
+
752
+ data_export = data_export[data_export['salary'] >= salary_min_var]
753
+ data_export = data_export[data_export['salary'] <= salary_max_var]
754
+
755
+ name_export = name_export[name_export['salary'] >= salary_min_var]
756
+ name_export = name_export[name_export['salary'] <= salary_max_var]
757
+
758
+ pm_name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
759
+ pm_data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
760
+
761
  st.download_button(
762
  label="Portfolio Manager Export (IDs)",
763
+ data=convert_pm_df(pm_data_export),
764
  file_name='NBA_optimals_export.csv',
765
  mime='text/csv',
766
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767
  st.download_button(
768
  label="Portfolio Manager Export (Names)",
769
+ data=convert_pm_df(pm_name_export),
770
  file_name='NBA_optimals_export.csv',
771
  mime='text/csv',
772
  )