James McCool commited on
Commit
0ad72bc
·
1 Parent(s): 9c3aa05

Refactor app.py layout for improved user experience: reorganize UI components into a container for better structure, enhance data loading functionality with a reset button, and streamline league and site selection processes, ensuring a more intuitive interface for managing NBA and WNBA lineups.

Browse files
Files changed (1) hide show
  1. app.py +39 -40
app.py CHANGED
@@ -359,49 +359,48 @@ fd_wnba_sd_lineups = pd.DataFrame(columns=fd_wnba_sd_columns)
359
 
360
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
361
 
362
- tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363
 
 
364
  with tab1:
365
 
366
-
367
- with st.container():
368
- st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
369
- reset_col, view_col, site_col, league_col = st.columns(4)
370
- with reset_col:
371
- # First row - timestamp and reset button
372
- col1, col2 = st.columns([3, 1])
373
- with col1:
374
- st.info(t_stamp)
375
- with col2:
376
- if st.button("Load/Reset Data", key='reset1'):
377
- st.cache_data.clear()
378
- dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats('NBA')
379
- salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
380
- id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
381
- salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
382
- dk_id_dict_sd = dict(zip(dk_sd_raw.Player, dk_sd_raw.player_ID))
383
- fd_id_dict_sd = dict(zip(fd_sd_raw.Player, fd_sd_raw.player_ID))
384
- dk_nba_lineups = pd.DataFrame(columns=dk_nba_columns)
385
- dk_nba_sd_lineups = pd.DataFrame(columns=dk_nba_sd_columns)
386
- fd_nba_lineups = pd.DataFrame(columns=fd_nba_columns)
387
- fd_nba_sd_lineups = pd.DataFrame(columns=fd_nba_sd_columns)
388
-
389
- dk_wnba_lineups = pd.DataFrame(columns=dk_wnba_columns)
390
- dk_wnba_sd_lineups = pd.DataFrame(columns=dk_wnba_sd_columns)
391
- fd_wnba_lineups = pd.DataFrame(columns=fd_wnba_columns)
392
- fd_wnba_sd_lineups = pd.DataFrame(columns=fd_wnba_sd_columns)
393
- t_stamp = f"Last Update: " + str(timestamp) + f" CST"
394
- for key in st.session_state.keys():
395
- del st.session_state[key]
396
- with view_col:
397
- view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
398
- with site_col:
399
- site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
400
- if 'working_seed' in st.session_state:
401
- del st.session_state['working_seed']
402
- with league_col:
403
- league_var = st.radio("What League to load:", ('WNBA', 'NBA'), key='league_var')
404
- dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats(league_var)
405
  with st.expander("Info and Filters"):
406
  col1, col2, col3 = st.columns(3)
407
 
 
359
 
360
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
361
 
362
+ with st.container():
363
+ st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
364
+ reset_col, view_col, site_col, league_col = st.columns(4)
365
+ with reset_col:
366
+ # First row - timestamp and reset button
367
+ col1, col2 = st.columns([3, 3])
368
+ with col1:
369
+ st.info(t_stamp)
370
+ with col2:
371
+ if st.button("Load/Reset Data", key='reset1'):
372
+ st.cache_data.clear()
373
+ dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats('NBA')
374
+ salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
375
+ id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
376
+ salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
377
+ dk_id_dict_sd = dict(zip(dk_sd_raw.Player, dk_sd_raw.player_ID))
378
+ fd_id_dict_sd = dict(zip(fd_sd_raw.Player, fd_sd_raw.player_ID))
379
+ dk_nba_lineups = pd.DataFrame(columns=dk_nba_columns)
380
+ dk_nba_sd_lineups = pd.DataFrame(columns=dk_nba_sd_columns)
381
+ fd_nba_lineups = pd.DataFrame(columns=fd_nba_columns)
382
+ fd_nba_sd_lineups = pd.DataFrame(columns=fd_nba_sd_columns)
383
+
384
+ dk_wnba_lineups = pd.DataFrame(columns=dk_wnba_columns)
385
+ dk_wnba_sd_lineups = pd.DataFrame(columns=dk_wnba_sd_columns)
386
+ fd_wnba_lineups = pd.DataFrame(columns=fd_wnba_columns)
387
+ fd_wnba_sd_lineups = pd.DataFrame(columns=fd_wnba_sd_columns)
388
+ t_stamp = f"Last Update: " + str(timestamp) + f" CST"
389
+ for key in st.session_state.keys():
390
+ del st.session_state[key]
391
+ with view_col:
392
+ view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
393
+ with site_col:
394
+ site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
395
+ if 'working_seed' in st.session_state:
396
+ del st.session_state['working_seed']
397
+ with league_col:
398
+ league_var = st.radio("What League to load:", ('WNBA', 'NBA'), key='league_var')
399
+ dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats(league_var)
400
 
401
+ tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
402
  with tab1:
403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404
  with st.expander("Info and Filters"):
405
  col1, col2, col3 = st.columns(3)
406