Spaces:
Running
Running
James McCool
commited on
Commit
·
0ad72bc
1
Parent(s):
9c3aa05
Refactor app.py layout for improved user experience: reorganize UI components into a container for better structure, enhance data loading functionality with a reset button, and streamline league and site selection processes, ensuring a more intuitive interface for managing NBA and WNBA lineups.
Browse files
app.py
CHANGED
@@ -359,49 +359,48 @@ fd_wnba_sd_lineups = pd.DataFrame(columns=fd_wnba_sd_columns)
|
|
359 |
|
360 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
361 |
|
362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
|
|
364 |
with tab1:
|
365 |
|
366 |
-
|
367 |
-
with st.container():
|
368 |
-
st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
|
369 |
-
reset_col, view_col, site_col, league_col = st.columns(4)
|
370 |
-
with reset_col:
|
371 |
-
# First row - timestamp and reset button
|
372 |
-
col1, col2 = st.columns([3, 1])
|
373 |
-
with col1:
|
374 |
-
st.info(t_stamp)
|
375 |
-
with col2:
|
376 |
-
if st.button("Load/Reset Data", key='reset1'):
|
377 |
-
st.cache_data.clear()
|
378 |
-
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats('NBA')
|
379 |
-
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
380 |
-
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
381 |
-
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|
382 |
-
dk_id_dict_sd = dict(zip(dk_sd_raw.Player, dk_sd_raw.player_ID))
|
383 |
-
fd_id_dict_sd = dict(zip(fd_sd_raw.Player, fd_sd_raw.player_ID))
|
384 |
-
dk_nba_lineups = pd.DataFrame(columns=dk_nba_columns)
|
385 |
-
dk_nba_sd_lineups = pd.DataFrame(columns=dk_nba_sd_columns)
|
386 |
-
fd_nba_lineups = pd.DataFrame(columns=fd_nba_columns)
|
387 |
-
fd_nba_sd_lineups = pd.DataFrame(columns=fd_nba_sd_columns)
|
388 |
-
|
389 |
-
dk_wnba_lineups = pd.DataFrame(columns=dk_wnba_columns)
|
390 |
-
dk_wnba_sd_lineups = pd.DataFrame(columns=dk_wnba_sd_columns)
|
391 |
-
fd_wnba_lineups = pd.DataFrame(columns=fd_wnba_columns)
|
392 |
-
fd_wnba_sd_lineups = pd.DataFrame(columns=fd_wnba_sd_columns)
|
393 |
-
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
394 |
-
for key in st.session_state.keys():
|
395 |
-
del st.session_state[key]
|
396 |
-
with view_col:
|
397 |
-
view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
|
398 |
-
with site_col:
|
399 |
-
site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
|
400 |
-
if 'working_seed' in st.session_state:
|
401 |
-
del st.session_state['working_seed']
|
402 |
-
with league_col:
|
403 |
-
league_var = st.radio("What League to load:", ('WNBA', 'NBA'), key='league_var')
|
404 |
-
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats(league_var)
|
405 |
with st.expander("Info and Filters"):
|
406 |
col1, col2, col3 = st.columns(3)
|
407 |
|
|
|
359 |
|
360 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
361 |
|
362 |
+
with st.container():
|
363 |
+
st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
|
364 |
+
reset_col, view_col, site_col, league_col = st.columns(4)
|
365 |
+
with reset_col:
|
366 |
+
# First row - timestamp and reset button
|
367 |
+
col1, col2 = st.columns([3, 3])
|
368 |
+
with col1:
|
369 |
+
st.info(t_stamp)
|
370 |
+
with col2:
|
371 |
+
if st.button("Load/Reset Data", key='reset1'):
|
372 |
+
st.cache_data.clear()
|
373 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats('NBA')
|
374 |
+
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
375 |
+
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
376 |
+
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|
377 |
+
dk_id_dict_sd = dict(zip(dk_sd_raw.Player, dk_sd_raw.player_ID))
|
378 |
+
fd_id_dict_sd = dict(zip(fd_sd_raw.Player, fd_sd_raw.player_ID))
|
379 |
+
dk_nba_lineups = pd.DataFrame(columns=dk_nba_columns)
|
380 |
+
dk_nba_sd_lineups = pd.DataFrame(columns=dk_nba_sd_columns)
|
381 |
+
fd_nba_lineups = pd.DataFrame(columns=fd_nba_columns)
|
382 |
+
fd_nba_sd_lineups = pd.DataFrame(columns=fd_nba_sd_columns)
|
383 |
+
|
384 |
+
dk_wnba_lineups = pd.DataFrame(columns=dk_wnba_columns)
|
385 |
+
dk_wnba_sd_lineups = pd.DataFrame(columns=dk_wnba_sd_columns)
|
386 |
+
fd_wnba_lineups = pd.DataFrame(columns=fd_wnba_columns)
|
387 |
+
fd_wnba_sd_lineups = pd.DataFrame(columns=fd_wnba_sd_columns)
|
388 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
389 |
+
for key in st.session_state.keys():
|
390 |
+
del st.session_state[key]
|
391 |
+
with view_col:
|
392 |
+
view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
|
393 |
+
with site_col:
|
394 |
+
site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
|
395 |
+
if 'working_seed' in st.session_state:
|
396 |
+
del st.session_state['working_seed']
|
397 |
+
with league_col:
|
398 |
+
league_var = st.radio("What League to load:", ('WNBA', 'NBA'), key='league_var')
|
399 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats(league_var)
|
400 |
|
401 |
+
tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
|
402 |
with tab1:
|
403 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
with st.expander("Info and Filters"):
|
405 |
col1, col2, col3 = st.columns(3)
|
406 |
|