Spaces:
Running
Running
James McCool
commited on
Commit
·
2675c26
1
Parent(s):
ef6c0f1
Refactor app.py: streamline connection initialization by removing unused Google Sheets credentials and enhance lineup functions to support multiple slate designations for improved flexibility
Browse files
app.py
CHANGED
@@ -9,46 +9,14 @@ st.set_page_config(layout="wide")
|
|
9 |
|
10 |
@st.cache_resource
|
11 |
def init_conn():
|
12 |
-
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
13 |
-
|
14 |
-
credentials = {
|
15 |
-
"type": "service_account",
|
16 |
-
"project_id": "model-sheets-connect",
|
17 |
-
"private_key_id": st.secrets['model_sheets_connect_pk'],
|
18 |
-
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
|
19 |
-
"client_email": "[email protected]",
|
20 |
-
"client_id": "100369174533302798535",
|
21 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
22 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
23 |
-
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
24 |
-
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
|
25 |
-
}
|
26 |
-
|
27 |
-
credentials2 = {
|
28 |
-
"type": "service_account",
|
29 |
-
"project_id": "sheets-api-connect-378620",
|
30 |
-
"private_key_id": st.secrets['sheets_api_connect_pk'],
|
31 |
-
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
32 |
-
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
33 |
-
"client_id": "106625872877651920064",
|
34 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
35 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
36 |
-
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
37 |
-
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
38 |
-
}
|
39 |
|
40 |
uri = st.secrets['mongo_uri']
|
41 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
42 |
db = client["NBA_DFS"]
|
43 |
-
|
44 |
-
NBA_Data = st.secrets['NBA_Data']
|
45 |
-
|
46 |
-
gc = gspread.service_account_from_dict(credentials)
|
47 |
-
gc2 = gspread.service_account_from_dict(credentials2)
|
48 |
|
49 |
-
return
|
50 |
|
51 |
-
|
52 |
|
53 |
dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
54 |
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
@@ -148,16 +116,33 @@ def load_overall_stats():
|
|
148 |
return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp
|
149 |
|
150 |
@st.cache_data(ttl = 60)
|
151 |
-
def init_DK_lineups():
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
raw_display = pd.DataFrame(list(cursor))
|
162 |
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
163 |
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
|
@@ -168,16 +153,51 @@ def init_DK_lineups():
|
|
168 |
return DK_seed
|
169 |
|
170 |
@st.cache_data(ttl = 60)
|
171 |
-
def
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
179 |
cursor = collection.find().limit(10000)
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
raw_display = pd.DataFrame(list(cursor))
|
182 |
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
183 |
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
|
@@ -187,6 +207,24 @@ def init_FD_lineups():
|
|
187 |
|
188 |
return FD_seed
|
189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
def convert_df_to_csv(df):
|
191 |
return df.to_csv().encode('utf-8')
|
192 |
|
@@ -199,8 +237,8 @@ dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats(
|
|
199 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
200 |
|
201 |
try:
|
202 |
-
dk_lineups = init_DK_lineups()
|
203 |
-
fd_lineups = init_FD_lineups()
|
204 |
except:
|
205 |
dk_lineups = pd.DataFrame(columns=dk_columns)
|
206 |
fd_lineups = pd.DataFrame(columns=fd_columns)
|
@@ -223,8 +261,8 @@ with tab1:
|
|
223 |
st.cache_data.clear()
|
224 |
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats()
|
225 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
226 |
-
dk_lineups = init_DK_lineups()
|
227 |
-
fd_lineups = init_FD_lineups()
|
228 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
229 |
for key in st.session_state.keys():
|
230 |
del st.session_state[key]
|
@@ -259,7 +297,7 @@ with tab1:
|
|
259 |
with col1:
|
260 |
low_salary = st.number_input('Enter Lowest Salary', min_value=3000, max_value=15000, value=3000, step=100, key='low_salary')
|
261 |
with col2:
|
262 |
-
high_salary = st.number_input('Enter Highest Salary', min_value=3000, max_value=
|
263 |
|
264 |
display_container_1 = st.empty()
|
265 |
display_dl_container_1 = st.empty()
|
@@ -300,9 +338,9 @@ with tab2:
|
|
300 |
with st.expander("Info and Filters"):
|
301 |
if st.button("Load/Reset Data", key='reset2'):
|
302 |
st.cache_data.clear()
|
303 |
-
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp
|
304 |
-
dk_lineups = init_DK_lineups()
|
305 |
-
fd_lineups = init_FD_lineups()
|
306 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
307 |
for key in st.session_state.keys():
|
308 |
del st.session_state[key]
|
|
|
9 |
|
10 |
@st.cache_resource
|
11 |
def init_conn():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
uri = st.secrets['mongo_uri']
|
14 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
15 |
db = client["NBA_DFS"]
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
return db
|
18 |
|
19 |
+
db = init_conn()
|
20 |
|
21 |
dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
22 |
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
|
|
116 |
return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp
|
117 |
|
118 |
@st.cache_data(ttl = 60)
|
119 |
+
def init_DK_lineups(slate_desig: str):
|
120 |
|
121 |
+
if slate_desig == 'Main Slate':
|
122 |
+
collection = db['DK_NBA_name_map']
|
123 |
+
cursor = collection.find()
|
124 |
+
raw_data = pd.DataFrame(list(cursor))
|
125 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
126 |
+
|
127 |
+
collection = db["DK_NBA_seed_frame"]
|
128 |
+
cursor = collection.find().limit(10000)
|
129 |
+
elif slate_desig == 'Secondary':
|
130 |
+
collection = db['DK_NBA_Secondary_name_map']
|
131 |
+
cursor = collection.find()
|
132 |
+
raw_data = pd.DataFrame(list(cursor))
|
133 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
134 |
+
|
135 |
+
collection = db["DK_NBA_Secondary_seed_frame"]
|
136 |
+
cursor = collection.find().limit(10000)
|
137 |
+
elif slate_desig == 'Auxiliary':
|
138 |
+
collection = db['DK_NBA_Auxiliary_name_map']
|
139 |
+
cursor = collection.find()
|
140 |
+
raw_data = pd.DataFrame(list(cursor))
|
141 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
142 |
+
|
143 |
+
collection = db["DK_NBA_Auxiliary_seed_frame"]
|
144 |
+
cursor = collection.find().limit(10000)
|
145 |
+
|
146 |
raw_display = pd.DataFrame(list(cursor))
|
147 |
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
148 |
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
|
|
|
153 |
return DK_seed
|
154 |
|
155 |
@st.cache_data(ttl = 60)
|
156 |
+
def init_DK_SD_lineups(slate_desig: str):
|
157 |
+
|
158 |
+
if slate_desig == 'Main Slate':
|
159 |
+
collection = db["DK_NBA_SD_seed_frame"]
|
160 |
+
elif slate_desig == 'Secondary':
|
161 |
+
collection = db["DK_NBA_Secondary_SD_seed_frame"]
|
162 |
+
elif slate_desig == 'Auxiliary':
|
163 |
+
collection = db["DK_NBA_Auxiliary_SD_seed_frame"]
|
164 |
+
|
165 |
cursor = collection.find().limit(10000)
|
166 |
|
167 |
+
raw_display = pd.DataFrame(list(cursor))
|
168 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
169 |
+
DK_seed = raw_display.to_numpy()
|
170 |
+
|
171 |
+
return DK_seed
|
172 |
+
|
173 |
+
@st.cache_data(ttl = 60)
|
174 |
+
def init_FD_lineups(slate_desig: str):
|
175 |
+
|
176 |
+
if slate_desig == 'Main Slate':
|
177 |
+
collection = db['FD_NBA_name_map']
|
178 |
+
cursor = collection.find()
|
179 |
+
raw_data = pd.DataFrame(list(cursor))
|
180 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
181 |
+
|
182 |
+
collection = db["FD_NBA_seed_frame"]
|
183 |
+
cursor = collection.find().limit(10000)
|
184 |
+
elif slate_desig == 'Secondary':
|
185 |
+
collection = db['FD_NBA_Secondary_name_map']
|
186 |
+
cursor = collection.find()
|
187 |
+
raw_data = pd.DataFrame(list(cursor))
|
188 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
189 |
+
|
190 |
+
collection = db["FD_NBA_Secondary_seed_frame"]
|
191 |
+
cursor = collection.find().limit(10000)
|
192 |
+
elif slate_desig == 'Auxiliary':
|
193 |
+
collection = db['FD_NBA_Auxiliary_name_map']
|
194 |
+
cursor = collection.find()
|
195 |
+
raw_data = pd.DataFrame(list(cursor))
|
196 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
197 |
+
|
198 |
+
collection = db["FD_NBA_Auxiliary_seed_frame"]
|
199 |
+
cursor = collection.find().limit(10000)
|
200 |
+
|
201 |
raw_display = pd.DataFrame(list(cursor))
|
202 |
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
203 |
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
|
|
|
207 |
|
208 |
return FD_seed
|
209 |
|
210 |
+
@st.cache_data(ttl = 60)
|
211 |
+
def init_FD_SD_lineups(slate_desig: str):
|
212 |
+
|
213 |
+
if slate_desig == 'Main Slate':
|
214 |
+
collection = db["FD_NBA_SD_seed_frame"]
|
215 |
+
elif slate_desig == 'Secondary':
|
216 |
+
collection = db["FD_NBA_Secondary_SD_seed_frame"]
|
217 |
+
elif slate_desig == 'Auxiliary':
|
218 |
+
collection = db["FD_NBA_Auxiliary_SD_seed_frame"]
|
219 |
+
|
220 |
+
cursor = collection.find().limit(10000)
|
221 |
+
|
222 |
+
raw_display = pd.DataFrame(list(cursor))
|
223 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
224 |
+
DK_seed = raw_display.to_numpy()
|
225 |
+
|
226 |
+
return DK_seed
|
227 |
+
|
228 |
def convert_df_to_csv(df):
|
229 |
return df.to_csv().encode('utf-8')
|
230 |
|
|
|
237 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
238 |
|
239 |
try:
|
240 |
+
dk_lineups = init_DK_lineups('Main Slate')
|
241 |
+
fd_lineups = init_FD_lineups('Main Slate')
|
242 |
except:
|
243 |
dk_lineups = pd.DataFrame(columns=dk_columns)
|
244 |
fd_lineups = pd.DataFrame(columns=fd_columns)
|
|
|
261 |
st.cache_data.clear()
|
262 |
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats()
|
263 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
264 |
+
dk_lineups = init_DK_lineups('Main Slate')
|
265 |
+
fd_lineups = init_FD_lineups('Main Slate')
|
266 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
267 |
for key in st.session_state.keys():
|
268 |
del st.session_state[key]
|
|
|
297 |
with col1:
|
298 |
low_salary = st.number_input('Enter Lowest Salary', min_value=3000, max_value=15000, value=3000, step=100, key='low_salary')
|
299 |
with col2:
|
300 |
+
high_salary = st.number_input('Enter Highest Salary', min_value=3000, max_value=25000, value=25000, step=100, key='high_salary')
|
301 |
|
302 |
display_container_1 = st.empty()
|
303 |
display_dl_container_1 = st.empty()
|
|
|
338 |
with st.expander("Info and Filters"):
|
339 |
if st.button("Load/Reset Data", key='reset2'):
|
340 |
st.cache_data.clear()
|
341 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats()
|
342 |
+
dk_lineups = init_DK_lineups('Main Slate')
|
343 |
+
fd_lineups = init_FD_lineups('Main Slate')
|
344 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
345 |
for key in st.session_state.keys():
|
346 |
del st.session_state[key]
|