James McCool commited on
Commit
2675c26
·
1 Parent(s): ef6c0f1

Refactor app.py: streamline connection initialization by removing unused Google Sheets credentials and enhance lineup functions to support multiple slate designations for improved flexibility

Browse files
Files changed (1) hide show
  1. app.py +97 -59
app.py CHANGED
@@ -9,46 +9,14 @@ st.set_page_config(layout="wide")
9
 
10
  @st.cache_resource
11
  def init_conn():
12
- scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
13
-
14
- credentials = {
15
- "type": "service_account",
16
- "project_id": "model-sheets-connect",
17
- "private_key_id": st.secrets['model_sheets_connect_pk'],
18
- "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
19
- "client_email": "[email protected]",
20
- "client_id": "100369174533302798535",
21
- "auth_uri": "https://accounts.google.com/o/oauth2/auth",
22
- "token_uri": "https://oauth2.googleapis.com/token",
23
- "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
24
- "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
25
- }
26
-
27
- credentials2 = {
28
- "type": "service_account",
29
- "project_id": "sheets-api-connect-378620",
30
- "private_key_id": st.secrets['sheets_api_connect_pk'],
31
- "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
32
- "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
33
- "client_id": "106625872877651920064",
34
- "auth_uri": "https://accounts.google.com/o/oauth2/auth",
35
- "token_uri": "https://oauth2.googleapis.com/token",
36
- "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
37
- "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
38
- }
39
 
40
  uri = st.secrets['mongo_uri']
41
  client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
42
  db = client["NBA_DFS"]
43
-
44
- NBA_Data = st.secrets['NBA_Data']
45
-
46
- gc = gspread.service_account_from_dict(credentials)
47
- gc2 = gspread.service_account_from_dict(credentials2)
48
 
49
- return gc, gc2, db, NBA_Data
50
 
51
- gcservice_account, gcservice_account2, db, NBA_Data = init_conn()
52
 
53
  dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
54
  fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
@@ -148,16 +116,33 @@ def load_overall_stats():
148
  return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp
149
 
150
  @st.cache_data(ttl = 60)
151
- def init_DK_lineups():
152
 
153
- collection = db['DK_NBA_name_map']
154
- cursor = collection.find()
155
- raw_data = pd.DataFrame(list(cursor))
156
- names_dict = dict(zip(raw_data['key'], raw_data['value']))
157
-
158
- collection = db["DK_NBA_seed_frame"]
159
- cursor = collection.find().limit(10000)
160
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
  raw_display = pd.DataFrame(list(cursor))
162
  raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
163
  dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
@@ -168,16 +153,51 @@ def init_DK_lineups():
168
  return DK_seed
169
 
170
  @st.cache_data(ttl = 60)
171
- def init_FD_lineups():
172
-
173
- collection = db['FD_NBA_name_map']
174
- cursor = collection.find()
175
- raw_data = pd.DataFrame(list(cursor))
176
- names_dict = dict(zip(raw_data['key'], raw_data['value']))
177
-
178
- collection = db["FD_NBA_seed_frame"]
 
179
  cursor = collection.find().limit(10000)
180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
  raw_display = pd.DataFrame(list(cursor))
182
  raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
183
  dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
@@ -187,6 +207,24 @@ def init_FD_lineups():
187
 
188
  return FD_seed
189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190
  def convert_df_to_csv(df):
191
  return df.to_csv().encode('utf-8')
192
 
@@ -199,8 +237,8 @@ dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats(
199
  salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
200
 
201
  try:
202
- dk_lineups = init_DK_lineups()
203
- fd_lineups = init_FD_lineups()
204
  except:
205
  dk_lineups = pd.DataFrame(columns=dk_columns)
206
  fd_lineups = pd.DataFrame(columns=fd_columns)
@@ -223,8 +261,8 @@ with tab1:
223
  st.cache_data.clear()
224
  dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats()
225
  id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
226
- dk_lineups = init_DK_lineups()
227
- fd_lineups = init_FD_lineups()
228
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
229
  for key in st.session_state.keys():
230
  del st.session_state[key]
@@ -259,7 +297,7 @@ with tab1:
259
  with col1:
260
  low_salary = st.number_input('Enter Lowest Salary', min_value=3000, max_value=15000, value=3000, step=100, key='low_salary')
261
  with col2:
262
- high_salary = st.number_input('Enter Highest Salary', min_value=3000, max_value=15000, value=15000, step=100, key='high_salary')
263
 
264
  display_container_1 = st.empty()
265
  display_dl_container_1 = st.empty()
@@ -300,9 +338,9 @@ with tab2:
300
  with st.expander("Info and Filters"):
301
  if st.button("Load/Reset Data", key='reset2'):
302
  st.cache_data.clear()
303
- dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
304
- dk_lineups = init_DK_lineups()
305
- fd_lineups = init_FD_lineups()
306
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
307
  for key in st.session_state.keys():
308
  del st.session_state[key]
 
9
 
10
  @st.cache_resource
11
  def init_conn():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  uri = st.secrets['mongo_uri']
14
  client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
15
  db = client["NBA_DFS"]
 
 
 
 
 
16
 
17
+ return db
18
 
19
+ db = init_conn()
20
 
21
  dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
22
  fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
 
116
  return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp
117
 
118
  @st.cache_data(ttl = 60)
119
+ def init_DK_lineups(slate_desig: str):
120
 
121
+ if slate_desig == 'Main Slate':
122
+ collection = db['DK_NBA_name_map']
123
+ cursor = collection.find()
124
+ raw_data = pd.DataFrame(list(cursor))
125
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
126
+
127
+ collection = db["DK_NBA_seed_frame"]
128
+ cursor = collection.find().limit(10000)
129
+ elif slate_desig == 'Secondary':
130
+ collection = db['DK_NBA_Secondary_name_map']
131
+ cursor = collection.find()
132
+ raw_data = pd.DataFrame(list(cursor))
133
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
134
+
135
+ collection = db["DK_NBA_Secondary_seed_frame"]
136
+ cursor = collection.find().limit(10000)
137
+ elif slate_desig == 'Auxiliary':
138
+ collection = db['DK_NBA_Auxiliary_name_map']
139
+ cursor = collection.find()
140
+ raw_data = pd.DataFrame(list(cursor))
141
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
142
+
143
+ collection = db["DK_NBA_Auxiliary_seed_frame"]
144
+ cursor = collection.find().limit(10000)
145
+
146
  raw_display = pd.DataFrame(list(cursor))
147
  raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
148
  dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
 
153
  return DK_seed
154
 
155
  @st.cache_data(ttl = 60)
156
+ def init_DK_SD_lineups(slate_desig: str):
157
+
158
+ if slate_desig == 'Main Slate':
159
+ collection = db["DK_NBA_SD_seed_frame"]
160
+ elif slate_desig == 'Secondary':
161
+ collection = db["DK_NBA_Secondary_SD_seed_frame"]
162
+ elif slate_desig == 'Auxiliary':
163
+ collection = db["DK_NBA_Auxiliary_SD_seed_frame"]
164
+
165
  cursor = collection.find().limit(10000)
166
 
167
+ raw_display = pd.DataFrame(list(cursor))
168
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
169
+ DK_seed = raw_display.to_numpy()
170
+
171
+ return DK_seed
172
+
173
+ @st.cache_data(ttl = 60)
174
+ def init_FD_lineups(slate_desig: str):
175
+
176
+ if slate_desig == 'Main Slate':
177
+ collection = db['FD_NBA_name_map']
178
+ cursor = collection.find()
179
+ raw_data = pd.DataFrame(list(cursor))
180
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
181
+
182
+ collection = db["FD_NBA_seed_frame"]
183
+ cursor = collection.find().limit(10000)
184
+ elif slate_desig == 'Secondary':
185
+ collection = db['FD_NBA_Secondary_name_map']
186
+ cursor = collection.find()
187
+ raw_data = pd.DataFrame(list(cursor))
188
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
189
+
190
+ collection = db["FD_NBA_Secondary_seed_frame"]
191
+ cursor = collection.find().limit(10000)
192
+ elif slate_desig == 'Auxiliary':
193
+ collection = db['FD_NBA_Auxiliary_name_map']
194
+ cursor = collection.find()
195
+ raw_data = pd.DataFrame(list(cursor))
196
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
197
+
198
+ collection = db["FD_NBA_Auxiliary_seed_frame"]
199
+ cursor = collection.find().limit(10000)
200
+
201
  raw_display = pd.DataFrame(list(cursor))
202
  raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
203
  dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
 
207
 
208
  return FD_seed
209
 
210
+ @st.cache_data(ttl = 60)
211
+ def init_FD_SD_lineups(slate_desig: str):
212
+
213
+ if slate_desig == 'Main Slate':
214
+ collection = db["FD_NBA_SD_seed_frame"]
215
+ elif slate_desig == 'Secondary':
216
+ collection = db["FD_NBA_Secondary_SD_seed_frame"]
217
+ elif slate_desig == 'Auxiliary':
218
+ collection = db["FD_NBA_Auxiliary_SD_seed_frame"]
219
+
220
+ cursor = collection.find().limit(10000)
221
+
222
+ raw_display = pd.DataFrame(list(cursor))
223
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
224
+ DK_seed = raw_display.to_numpy()
225
+
226
+ return DK_seed
227
+
228
  def convert_df_to_csv(df):
229
  return df.to_csv().encode('utf-8')
230
 
 
237
  salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
238
 
239
  try:
240
+ dk_lineups = init_DK_lineups('Main Slate')
241
+ fd_lineups = init_FD_lineups('Main Slate')
242
  except:
243
  dk_lineups = pd.DataFrame(columns=dk_columns)
244
  fd_lineups = pd.DataFrame(columns=fd_columns)
 
261
  st.cache_data.clear()
262
  dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats()
263
  id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
264
+ dk_lineups = init_DK_lineups('Main Slate')
265
+ fd_lineups = init_FD_lineups('Main Slate')
266
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
267
  for key in st.session_state.keys():
268
  del st.session_state[key]
 
297
  with col1:
298
  low_salary = st.number_input('Enter Lowest Salary', min_value=3000, max_value=15000, value=3000, step=100, key='low_salary')
299
  with col2:
300
+ high_salary = st.number_input('Enter Highest Salary', min_value=3000, max_value=25000, value=25000, step=100, key='high_salary')
301
 
302
  display_container_1 = st.empty()
303
  display_dl_container_1 = st.empty()
 
338
  with st.expander("Info and Filters"):
339
  if st.button("Load/Reset Data", key='reset2'):
340
  st.cache_data.clear()
341
+ dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats()
342
+ dk_lineups = init_DK_lineups('Main Slate')
343
+ fd_lineups = init_FD_lineups('Main Slate')
344
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
345
  for key in st.session_state.keys():
346
  del st.session_state[key]