James McCool commited on
Commit
29e7d2d
·
1 Parent(s): 16a2718

Enhance data export functionality in app.py: add separate download buttons for optimal lineups by player names and IDs, improving user experience and data accessibility.

Browse files
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -424,29 +424,38 @@ with tab2:
424
  if site_var1 == 'Draftkings':
425
  if slate_type_var1 == 'Regular':
426
  data_export = init_DK_lineups(slate_var1)
 
427
  for col_idx in range(8):
428
  data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
429
  elif slate_type_var1 == 'Showdown':
430
  data_export = init_DK_SD_lineups(slate_var1)
 
431
  for col_idx in range(6):
432
  data_export[:, col_idx] = np.array([id_dict_sd.get(player, player) for player in data_export[:, col_idx]])
433
 
434
  elif site_var1 == 'Fanduel':
435
  if slate_type_var1 == 'Regular':
436
  data_export = init_FD_lineups(slate_var1)
 
437
  for col_idx in range(9):
438
  data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
439
  elif slate_type_var1 == 'Showdown':
440
  data_export = init_FD_SD_lineups(slate_var1)
 
441
  for col_idx in range(6):
442
  data_export[:, col_idx] = np.array([id_dict_sd.get(player, player) for player in data_export[:, col_idx]])
443
-
444
  st.download_button(
445
- label="Export optimals set",
 
 
 
 
 
 
446
  data=convert_df(data_export),
447
  file_name='NBA_optimals_export.csv',
448
  mime='text/csv',
449
- )
450
 
451
 
452
  if site_var1 == 'Draftkings':
 
424
  if site_var1 == 'Draftkings':
425
  if slate_type_var1 == 'Regular':
426
  data_export = init_DK_lineups(slate_var1)
427
+ data_export_names = data_export.copy()
428
  for col_idx in range(8):
429
  data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
430
  elif slate_type_var1 == 'Showdown':
431
  data_export = init_DK_SD_lineups(slate_var1)
432
+ data_export_names = data_export.copy()
433
  for col_idx in range(6):
434
  data_export[:, col_idx] = np.array([id_dict_sd.get(player, player) for player in data_export[:, col_idx]])
435
 
436
  elif site_var1 == 'Fanduel':
437
  if slate_type_var1 == 'Regular':
438
  data_export = init_FD_lineups(slate_var1)
439
+ data_export_names = data_export.copy()
440
  for col_idx in range(9):
441
  data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
442
  elif slate_type_var1 == 'Showdown':
443
  data_export = init_FD_SD_lineups(slate_var1)
444
+ data_export_names = data_export.copy()
445
  for col_idx in range(6):
446
  data_export[:, col_idx] = np.array([id_dict_sd.get(player, player) for player in data_export[:, col_idx]])
 
447
  st.download_button(
448
+ label="Export optimals (Names)",
449
+ data=convert_df(data_export_names),
450
+ file_name='NBA_optimals_export.csv',
451
+ mime='text/csv',
452
+ )
453
+ st.download_button(
454
+ label="Export optimals (IDs)",
455
  data=convert_df(data_export),
456
  file_name='NBA_optimals_export.csv',
457
  mime='text/csv',
458
+ )
459
 
460
 
461
  if site_var1 == 'Draftkings':