James McCool commited on
Commit
53152e8
·
1 Parent(s): 9143c92

Removed custom ROO, adjusted some object names, added a TLL to data

Browse files
Files changed (1) hide show
  1. app.py +21 -167
app.py CHANGED
@@ -35,7 +35,7 @@ gspreadcon = init_conn()
35
 
36
  dk_player_url = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
37
 
38
- @st.cache_data
39
  def load_overall_stats():
40
  sh = gspreadcon.open_by_url(dk_player_url)
41
  worksheet = sh.worksheet('DK_Build_Up')
@@ -83,8 +83,7 @@ def load_overall_stats():
83
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
84
  roo_raw = raw_display.sort_values(by='Median', ascending=False)
85
 
86
- worksheet = sh.worksheet('Timestamp')
87
- timestamp = worksheet.acell('A1').value
88
 
89
  return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp
90
 
@@ -94,25 +93,9 @@ def convert_df_to_csv(df):
94
  dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats()
95
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
96
 
97
- tab1, tab2, tab3 = st.tabs(['Uploads and Info', 'Range of Outcomes', 'Custom Range of Outcomes'])
98
 
99
  with tab1:
100
- st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'Median', 'Own'.")
101
- col1, col2 = st.columns([1, 5])
102
-
103
- with col1:
104
- proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
105
-
106
- if proj_file is not None:
107
- try:
108
- proj_dataframe = pd.read_csv(proj_file)
109
- except:
110
- proj_dataframe = pd.read_excel(proj_file)
111
- with col2:
112
- if proj_file is not None:
113
- st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
114
-
115
- with tab2:
116
 
117
  col1, col2 = st.columns([1, 9])
118
 
@@ -126,15 +109,15 @@ with tab2:
126
  del st.session_state[key]
127
  site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
128
  if site_var2 == 'Draftkings':
129
- site_baselines = roo_raw[roo_raw['Site'] == 'Draftkings']
130
  elif site_var2 == 'Fanduel':
131
- site_baselines = roo_raw[roo_raw['Site'] == 'Fanduel']
132
  slate_split = st.radio("Are you viewing the main slate or the secondary slate?", ('Main Slate', 'Secondary'), key='slate_split')
133
  if slate_split == 'Main Slate':
134
- raw_baselines = site_baselines[site_baselines['Slate'] == 'Main Slate']
135
  elif slate_split == 'Secondary':
136
- raw_baselines = site_baselines[site_baselines['Slate'] == 'Secondary']
137
- split_var2 = st.radio("Are you running the full slate or crtain games?", ('Full Slate Run', 'Specific Games'), key='split_var2')
138
  if split_var2 == 'Specific Games':
139
  team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2')
140
  elif split_var2 == 'Full Slate Run':
@@ -155,7 +138,7 @@ with tab2:
155
  st.session_state.display_proj = st.session_state.display_proj
156
  elif pos_var2 != 'All':
157
  st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
158
- st.dataframe(st.session_state.display_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
159
 
160
  with display_dl_container_1:
161
  display_dl_container = st.empty()
@@ -167,147 +150,18 @@ with tab2:
167
  mime='text/csv',
168
  )
169
 
170
- with tab3:
171
-
172
- col1, col2 = st.columns([1, 9])
173
 
174
  with col1:
175
- st.info(t_stamp)
176
- if st.button("Load/Reset Data", key='reset2'):
177
- st.cache_data.clear()
178
- dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats()
179
- t_stamp = f"Last Update: " + str(timestamp) + f" CST"
180
- for key in st.session_state.keys():
181
- del st.session_state[key]
182
- slate_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='slate_var1')
183
- site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
184
- slate_split2 = st.radio("Are you viewing the main slate or the secondary slate?", ('Main Slate', 'Secondary'), key='slate_split2')
185
- if site_var1 == 'Draftkings':
186
- if slate_var1 == 'User':
187
- raw_baselines = proj_dataframe
188
- elif slate_var1 != 'User':
189
- if slate_split2 == 'Main Slate':
190
- raw_baselines = dk_raw
191
- elif slate_split2 == 'Secondary':
192
- raw_baselines = dk_raw_sec
193
- elif site_var1 == 'Fanduel':
194
- if slate_var1 == 'User':
195
- raw_baselines = proj_dataframe
196
- elif slate_var1 != 'User':
197
- if slate_split2 == 'Main Slate':
198
- raw_baselines = fd_raw
199
- elif slate_split2 == 'Secondary':
200
- raw_baselines = fd_raw_sec
201
- split_var1 = st.radio("Are you running the full slate or crtain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
202
- if split_var1 == 'Specific Games':
203
- team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1')
204
- elif split_var1 == 'Full Slate Run':
205
- team_var1 = raw_baselines.Team.values.tolist()
206
- pos_var1 = st.selectbox('View specific position?', options = ['All', 'PG', 'SG', 'SF', 'PF', 'C'])
207
-
208
  with col2:
209
- display_container = st.empty()
210
- display_dl_container = st.empty()
211
- hold_container = st.empty()
212
- if st.button('Create Range of Outcomes for Slate'):
213
- with hold_container:
214
-
215
- working_roo = raw_baselines
216
- working_roo = working_roo[working_roo['Team'].isin(team_var1)]
217
- own_dict = dict(zip(working_roo.Player, working_roo.Own))
218
- min_dict = dict(zip(working_roo.Player, working_roo.Minutes))
219
- team_dict = dict(zip(working_roo.Player, working_roo.Team))
220
- total_sims = 1000
221
-
222
- flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes']]
223
- flex_file.rename(columns={"Agg": "Median"}, inplace = True)
224
- flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
225
- flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
226
- flex_file['STD'] = (flex_file['Median']/4)
227
- flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
228
- hold_file = flex_file
229
- overall_file = flex_file
230
- salary_file = flex_file
231
-
232
- overall_players = overall_file[['Player']]
233
-
234
- for x in range(0,total_sims):
235
- salary_file[x] = salary_file['Salary']
236
-
237
- salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
238
- salary_file.astype('int').dtypes
239
-
240
- salary_file = salary_file.div(1000)
241
-
242
- for x in range(0,total_sims):
243
- overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
244
-
245
- overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
246
- overall_file.astype('int').dtypes
247
-
248
- players_only = hold_file[['Player']]
249
- raw_lineups_file = players_only
250
-
251
- for x in range(0,total_sims):
252
- maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
253
- raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
254
- players_only[x] = raw_lineups_file[x].rank(ascending=False)
255
-
256
- players_only=players_only.drop(['Player'], axis=1)
257
- players_only.astype('int').dtypes
258
-
259
- salary_2x_check = (overall_file - (salary_file*4))
260
- salary_3x_check = (overall_file - (salary_file*5))
261
- salary_4x_check = (overall_file - (salary_file*6))
262
- gpp_check = (overall_file - ((salary_file*5)+10))
263
-
264
- players_only['Average_Rank'] = players_only.mean(axis=1)
265
- players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
266
- players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
267
- players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
268
- players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
269
- players_only['3x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
270
- players_only['4x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
271
- players_only['5x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
272
- players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
273
-
274
- players_only['Player'] = hold_file[['Player']]
275
-
276
- final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
277
-
278
- final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
279
- final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
280
-
281
- final_Proj['Own'] = final_Proj['Player'].map(own_dict)
282
- final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
283
- final_Proj['Team'] = final_Proj['Player'].map(team_dict)
284
- final_Proj['Own'] = final_Proj['Own'].astype('float')
285
- final_Proj['LevX'] = ((final_Proj[['Top_finish', '4x%', 'Top_5_finish']].mean(axis=1))*100) - final_Proj['Own']
286
- final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']
287
-
288
- final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%', 'Own', 'LevX', 'ValX']]
289
- final_Proj = final_Proj.set_index('Player')
290
- final_Proj = final_Proj.sort_values(by='Median', ascending=False)
291
-
292
- st.session_state.final_Proj = final_Proj
293
-
294
- hold_container = st.empty()
295
-
296
- with display_container:
297
- display_container = st.empty()
298
- if 'final_Proj' in st.session_state:
299
- if pos_var1 == 'All':
300
- st.session_state.final_Proj = st.session_state.final_Proj
301
- elif pos_var1 != 'All':
302
- st.session_state.final_Proj = st.session_state.final_Proj[st.session_state.final_Proj['Position'].str.contains(pos_var1)]
303
- st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
304
-
305
- with display_dl_container:
306
- display_dl_container = st.empty()
307
- if 'final_Proj' in st.session_state:
308
- st.download_button(
309
- label="Export Tables",
310
- data=convert_df_to_csv(st.session_state.final_Proj),
311
- file_name='Custom_NBA_export.csv',
312
- mime='text/csv',
313
- )
 
35
 
36
  dk_player_url = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
37
 
38
+ @st.cache_data(ttl=300)
39
  def load_overall_stats():
40
  sh = gspreadcon.open_by_url(dk_player_url)
41
  worksheet = sh.worksheet('DK_Build_Up')
 
83
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
84
  roo_raw = raw_display.sort_values(by='Median', ascending=False)
85
 
86
+ timestamp = raw_display['timestamp'].values[0]
 
87
 
88
  return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp
89
 
 
93
  dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp = load_overall_stats()
94
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
95
 
96
+ tab1, tab2, tab3 = st.tabs(['Range of Outcomes', 'Uploads and Info'])
97
 
98
  with tab1:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
  col1, col2 = st.columns([1, 9])
101
 
 
109
  del st.session_state[key]
110
  site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
111
  if site_var2 == 'Draftkings':
112
+ site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
113
  elif site_var2 == 'Fanduel':
114
+ site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
115
  slate_split = st.radio("Are you viewing the main slate or the secondary slate?", ('Main Slate', 'Secondary'), key='slate_split')
116
  if slate_split == 'Main Slate':
117
+ raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
118
  elif slate_split == 'Secondary':
119
+ raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary']
120
+ split_var2 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var2')
121
  if split_var2 == 'Specific Games':
122
  team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2')
123
  elif split_var2 == 'Full Slate Run':
 
138
  st.session_state.display_proj = st.session_state.display_proj
139
  elif pos_var2 != 'All':
140
  st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
141
+ st.dataframe(st.session_state.display_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=1000, use_container_width = True)
142
 
143
  with display_dl_container_1:
144
  display_dl_container = st.empty()
 
150
  mime='text/csv',
151
  )
152
 
153
+ with tab2:
154
+ st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'Median', 'Own'.")
155
+ col1, col2 = st.columns([1, 5])
156
 
157
  with col1:
158
+ proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
159
+
160
+ if proj_file is not None:
161
+ try:
162
+ proj_dataframe = pd.read_csv(proj_file)
163
+ except:
164
+ proj_dataframe = pd.read_excel(proj_file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
  with col2:
166
+ if proj_file is not None:
167
+ st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)