James McCool commited on
Commit
5576a5d
·
1 Parent(s): 4336d9e

Added summary frame statistics

Browse files
Files changed (1) hide show
  1. app.py +41 -9
app.py CHANGED
@@ -247,12 +247,6 @@ with tab2:
247
  elif player_var1 == 'Full Slate':
248
  player_var2 = fd_raw.Player.values.tolist()
249
 
250
- own_var_low, own_var_high = st.slider("Select ownership range",
251
- min_value=float(min_own),
252
- max_value=float(max_own),
253
- value=(float(min_own), float(max_own)),
254
- step=float(10.00))
255
-
256
  with col2:
257
 
258
  if site_var1 == 'Draftkings':
@@ -302,11 +296,49 @@ with tab2:
302
 
303
  with st.container():
304
  if 'data_export_display' in st.session_state:
305
- # Get the first 9 columns
306
- first_9_columns = st.session_state.data_export_display.iloc[:, :9]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307
 
308
  # Flatten the DataFrame and count unique values
309
- value_counts = first_9_columns.values.flatten().tolist()
310
  value_counts = pd.Series(value_counts).value_counts()
311
 
312
  percentages = (value_counts / lineup_num_var * 100).round(2)
 
247
  elif player_var1 == 'Full Slate':
248
  player_var2 = fd_raw.Player.values.tolist()
249
 
 
 
 
 
 
 
250
  with col2:
251
 
252
  if site_var1 == 'Draftkings':
 
296
 
297
  with st.container():
298
  if 'data_export_display' in st.session_state:
299
+ # Create a new dataframe with summary statistics
300
+ summary_df = pd.DataFrame({
301
+ 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
302
+ 'Salary': [
303
+ st.session_state.Sim_Winner_Display['salary'].min(),
304
+ st.session_state.Sim_Winner_Display['salary'].mean(),
305
+ st.session_state.Sim_Winner_Display['salary'].max(),
306
+ st.session_state.Sim_Winner_Display['salary'].std()
307
+ ],
308
+ 'Proj': [
309
+ st.session_state.Sim_Winner_Display['proj'].min(),
310
+ st.session_state.Sim_Winner_Display['proj'].mean(),
311
+ st.session_state.Sim_Winner_Display['proj'].max(),
312
+ st.session_state.Sim_Winner_Display['proj'].std()
313
+ ],
314
+ 'Own': [
315
+ st.session_state.Sim_Winner_Display['Own'].min(),
316
+ st.session_state.Sim_Winner_Display['Own'].mean(),
317
+ st.session_state.Sim_Winner_Display['Own'].max(),
318
+ st.session_state.Sim_Winner_Display['Own'].std()
319
+ ]
320
+ })
321
+
322
+ # Set the index of the summary dataframe as the "Metric" column
323
+ summary_df = summary_df.set_index('Metric')
324
+
325
+ # Display the summary dataframe
326
+ st.subheader("Optimal Statistics")
327
+ st.dataframe(summary_df.style.format({
328
+ 'Salary': '{:.2f}',
329
+ 'Proj': '{:.2f}',
330
+ 'Own': '{:.2f}'
331
+ }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
332
+
333
+ with st.container():
334
+ if 'data_export_display' in st.session_state:
335
+ if site_var1 == 'Draftkings':
336
+ player_columns = st.session_state.data_export_display.iloc[:, :8]
337
+ elif site_var1 == 'Fanduel':
338
+ player_columns = st.session_state.data_export_display.iloc[:, :9]
339
 
340
  # Flatten the DataFrame and count unique values
341
+ value_counts = player_columns.values.flatten().tolist()
342
  value_counts = pd.Series(value_counts).value_counts()
343
 
344
  percentages = (value_counts / lineup_num_var * 100).round(2)