Spaces:
Running
Running
James McCool
commited on
Commit
·
5576a5d
1
Parent(s):
4336d9e
Added summary frame statistics
Browse files
app.py
CHANGED
@@ -247,12 +247,6 @@ with tab2:
|
|
247 |
elif player_var1 == 'Full Slate':
|
248 |
player_var2 = fd_raw.Player.values.tolist()
|
249 |
|
250 |
-
own_var_low, own_var_high = st.slider("Select ownership range",
|
251 |
-
min_value=float(min_own),
|
252 |
-
max_value=float(max_own),
|
253 |
-
value=(float(min_own), float(max_own)),
|
254 |
-
step=float(10.00))
|
255 |
-
|
256 |
with col2:
|
257 |
|
258 |
if site_var1 == 'Draftkings':
|
@@ -302,11 +296,49 @@ with tab2:
|
|
302 |
|
303 |
with st.container():
|
304 |
if 'data_export_display' in st.session_state:
|
305 |
-
#
|
306 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
|
308 |
# Flatten the DataFrame and count unique values
|
309 |
-
value_counts =
|
310 |
value_counts = pd.Series(value_counts).value_counts()
|
311 |
|
312 |
percentages = (value_counts / lineup_num_var * 100).round(2)
|
|
|
247 |
elif player_var1 == 'Full Slate':
|
248 |
player_var2 = fd_raw.Player.values.tolist()
|
249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
with col2:
|
251 |
|
252 |
if site_var1 == 'Draftkings':
|
|
|
296 |
|
297 |
with st.container():
|
298 |
if 'data_export_display' in st.session_state:
|
299 |
+
# Create a new dataframe with summary statistics
|
300 |
+
summary_df = pd.DataFrame({
|
301 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
302 |
+
'Salary': [
|
303 |
+
st.session_state.Sim_Winner_Display['salary'].min(),
|
304 |
+
st.session_state.Sim_Winner_Display['salary'].mean(),
|
305 |
+
st.session_state.Sim_Winner_Display['salary'].max(),
|
306 |
+
st.session_state.Sim_Winner_Display['salary'].std()
|
307 |
+
],
|
308 |
+
'Proj': [
|
309 |
+
st.session_state.Sim_Winner_Display['proj'].min(),
|
310 |
+
st.session_state.Sim_Winner_Display['proj'].mean(),
|
311 |
+
st.session_state.Sim_Winner_Display['proj'].max(),
|
312 |
+
st.session_state.Sim_Winner_Display['proj'].std()
|
313 |
+
],
|
314 |
+
'Own': [
|
315 |
+
st.session_state.Sim_Winner_Display['Own'].min(),
|
316 |
+
st.session_state.Sim_Winner_Display['Own'].mean(),
|
317 |
+
st.session_state.Sim_Winner_Display['Own'].max(),
|
318 |
+
st.session_state.Sim_Winner_Display['Own'].std()
|
319 |
+
]
|
320 |
+
})
|
321 |
+
|
322 |
+
# Set the index of the summary dataframe as the "Metric" column
|
323 |
+
summary_df = summary_df.set_index('Metric')
|
324 |
+
|
325 |
+
# Display the summary dataframe
|
326 |
+
st.subheader("Optimal Statistics")
|
327 |
+
st.dataframe(summary_df.style.format({
|
328 |
+
'Salary': '{:.2f}',
|
329 |
+
'Proj': '{:.2f}',
|
330 |
+
'Own': '{:.2f}'
|
331 |
+
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
|
332 |
+
|
333 |
+
with st.container():
|
334 |
+
if 'data_export_display' in st.session_state:
|
335 |
+
if site_var1 == 'Draftkings':
|
336 |
+
player_columns = st.session_state.data_export_display.iloc[:, :8]
|
337 |
+
elif site_var1 == 'Fanduel':
|
338 |
+
player_columns = st.session_state.data_export_display.iloc[:, :9]
|
339 |
|
340 |
# Flatten the DataFrame and count unique values
|
341 |
+
value_counts = player_columns.values.flatten().tolist()
|
342 |
value_counts = pd.Series(value_counts).value_counts()
|
343 |
|
344 |
percentages = (value_counts / lineup_num_var * 100).round(2)
|