Multichem commited on
Commit
6ef6fac
·
1 Parent(s): bb6af4f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +198 -0
app.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pulp
2
+ import numpy as np
3
+ import pandas as pd
4
+ import random
5
+ import sys
6
+ import openpyxl
7
+ import re
8
+ import time
9
+ import streamlit as st
10
+ import matplotlib
11
+ from matplotlib.colors import LinearSegmentedColormap
12
+ from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
13
+ import json
14
+ import requests
15
+ import gspread
16
+ import plotly.figure_factory as ff
17
+
18
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
19
+ "https://www.googleapis.com/auth/drive"]
20
+
21
+ credentials = {
22
+ "type": "service_account",
23
+ "project_id": "sheets-api-connect-378620",
24
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
25
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
26
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
27
+ "client_id": "106625872877651920064",
28
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
29
+ "token_uri": "https://oauth2.googleapis.com/token",
30
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
31
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
32
+ }
33
+
34
+ gc = gspread.service_account_from_dict(credentials)
35
+
36
+ st.set_page_config(layout="wide")
37
+
38
+ dk_player_url = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
39
+ fd_player_url = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
40
+
41
+ @st.cache_data
42
+ def load_overall_stats(URL):
43
+ sh = gc.open_by_url(URL)
44
+ worksheet = sh.get_worksheet(8)
45
+ raw_display = pd.DataFrame(worksheet.get_all_records())
46
+ raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
47
+ raw_display.replace("", 'Welp', inplace=True)
48
+ raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
49
+ raw_display = raw_display.loc[raw_display['Median'] > 0]
50
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
51
+ raw_display = raw_display.sort_values(by='Median', ascending=False)
52
+
53
+ return raw_display
54
+
55
+ @st.cache_data
56
+ def load_fd_overall_stats(URL):
57
+ sh = gc.open_by_url(URL)
58
+ worksheet = sh.get_worksheet(9)
59
+ raw_display = pd.DataFrame(worksheet.get_all_records())
60
+ raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
61
+ raw_display.replace("", 'Welp', inplace=True)
62
+ raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
63
+ raw_display = raw_display.loc[raw_display['Median'] > 0]
64
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
65
+ raw_display = raw_display.sort_values(by='Median', ascending=False)
66
+
67
+ return raw_display
68
+
69
+ raw_baselines = load_overall_stats(dk_player_url)
70
+
71
+ tab1, tab2 = st.tabs(["Range of Outcomes Model", "Optimizer (Coming soon)"])
72
+
73
+ def convert_df_to_csv(df):
74
+ return df.to_csv().encode('utf-8')
75
+
76
+ with tab1:
77
+
78
+ col1, col2 = st.columns([1, 5])
79
+
80
+ with col1:
81
+ if st.button("Load/Reset Data", key='reset1'):
82
+ st.cache_data.clear()
83
+ raw_baselines = load_overall_stats(dk_player_url)
84
+ site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
85
+ if site_var1 == 'Draftkings':
86
+ raw_baselines = load_overall_stats(dk_player_url)
87
+ elif site_var1 == 'Fanduel':
88
+ raw_baselines = load_fd_overall_stats(fd_player_url)
89
+ split_var1 = st.radio("Are you running the full slate or crtain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
90
+ if split_var1 == 'Specific Games':
91
+ team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1')
92
+ elif split_var1 == 'Full Slate Run':
93
+ team_var1 = raw_baselines.Team.values.tolist()
94
+ pos_var1 = st.selectbox('View specific position?', options = ['All', 'PG', 'SG', 'SF', 'PF', 'C'])
95
+
96
+ with col2:
97
+ hold_container = st.empty()
98
+ if st.button('Create Range of Outcomes for Slate'):
99
+ with hold_container:
100
+ if site_var1 == 'Draftkings':
101
+ raw_baselines = load_overall_stats(dk_player_url)
102
+ elif site_var1 == 'Fanduel':
103
+ raw_baselines = load_fd_overall_stats(fd_player_url)
104
+
105
+ working_roo = raw_baselines
106
+ working_roo = working_roo[working_roo['Team'].isin(team_var1)]
107
+ own_dict = dict(zip(working_roo.Player, working_roo.Own))
108
+ min_dict = dict(zip(working_roo.Player, working_roo.Minutes))
109
+ team_dict = dict(zip(working_roo.Player, working_roo.Team))
110
+ total_sims = 1000
111
+
112
+ flex_file = working_roo[['Player', 'Position', 'Salary', 'Median']]
113
+ flex_file.rename(columns={"Agg": "Median"}, inplace = True)
114
+ flex_file['Floor'] = flex_file['Median']*.25
115
+ flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Floor'])
116
+ flex_file['STD'] = (flex_file['Median']/4)
117
+ flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
118
+ hold_file = flex_file
119
+ overall_file = flex_file
120
+ salary_file = flex_file
121
+
122
+ overall_players = overall_file[['Player']]
123
+
124
+ for x in range(0,total_sims):
125
+ salary_file[x] = salary_file['Salary']
126
+
127
+ salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
128
+ salary_file.astype('int').dtypes
129
+
130
+ salary_file = salary_file.div(1000)
131
+
132
+ for x in range(0,total_sims):
133
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
134
+
135
+ overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
136
+ overall_file.astype('int').dtypes
137
+
138
+ players_only = hold_file[['Player']]
139
+ raw_lineups_file = players_only
140
+
141
+ for x in range(0,total_sims):
142
+ maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
143
+ raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
144
+ players_only[x] = raw_lineups_file[x].rank(ascending=False)
145
+
146
+ players_only=players_only.drop(['Player'], axis=1)
147
+ players_only.astype('int').dtypes
148
+
149
+ salary_2x_check = (overall_file - (salary_file*4))
150
+ salary_3x_check = (overall_file - (salary_file*5))
151
+ salary_4x_check = (overall_file - (salary_file*6))
152
+ gpp_check = (overall_file - ((salary_file*5)+10))
153
+
154
+ players_only['Average_Rank'] = players_only.mean(axis=1)
155
+ players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
156
+ players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
157
+ players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
158
+ players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
159
+ players_only['3x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
160
+ players_only['4x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
161
+ players_only['5x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
162
+ players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
163
+
164
+ players_only['Player'] = hold_file[['Player']]
165
+
166
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
167
+
168
+ final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
169
+ final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
170
+
171
+ final_Proj['Own'] = final_Proj['Player'].map(own_dict)
172
+ final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
173
+ final_Proj['Team'] = final_Proj['Player'].map(team_dict)
174
+ final_Proj['Own'] = final_Proj['Own'].astype('float')
175
+ final_Proj['LevX'] = ((final_Proj[['Top_finish', '4x%', 'Top_5_finish']].mean(axis=1))*100) - final_Proj['Own']
176
+ final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']
177
+
178
+ final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%', 'Own', 'LevX', 'ValX']]
179
+ final_Proj = final_Proj.set_index('Player')
180
+ final_Proj = final_Proj.sort_values(by='Median', ascending=False)
181
+ with hold_container:
182
+ hold_container = st.empty()
183
+
184
+ if pos_var1 == 'All':
185
+ final_Proj = final_Proj
186
+ elif pos_var1 != 'All':
187
+ final_Proj = final_Proj[final_Proj['Position'].str.contains(pos_var1)]
188
+ st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
189
+
190
+ st.download_button(
191
+ label="Export Tables",
192
+ data=convert_df_to_csv(final_Proj),
193
+ file_name='Custom_NBA_export.csv',
194
+ mime='text/csv',
195
+ )
196
+
197
+ with tab2:
198
+ st.info('Nothing here yet, but will be porting in a simple lineup optimizer soon')