Spaces:
Running
Running
James McCool
commited on
Commit
·
82b17d9
1
Parent(s):
a47b0a6
Refactor league variable usage in app.py: replace hardcoded 'NBA' string with direct argument in load_overall_stats function calls, improving code clarity and maintainability.
Browse files
app.py
CHANGED
@@ -270,8 +270,7 @@ def convert_df(array):
|
|
270 |
array = pd.DataFrame(array, columns=column_names)
|
271 |
return array.to_csv().encode('utf-8')
|
272 |
|
273 |
-
|
274 |
-
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats(league_var)
|
275 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
276 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
277 |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|
@@ -299,8 +298,7 @@ with tab1:
|
|
299 |
with col2:
|
300 |
if st.button("Load/Reset Data", key='reset1'):
|
301 |
st.cache_data.clear()
|
302 |
-
|
303 |
-
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats(league_var)
|
304 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
305 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
306 |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|
@@ -318,6 +316,7 @@ with tab1:
|
|
318 |
view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
|
319 |
with col2:
|
320 |
league_var = st.radio("What League to load:", ('NBA', 'WNBA'), key='league_var')
|
|
|
321 |
with col3:
|
322 |
slate_type_var2 = st.radio("What slate type are you working with?", ('Regular', 'Showdown'), key='slate_type_var2')
|
323 |
with col4:
|
@@ -400,8 +399,7 @@ with tab2:
|
|
400 |
with st.expander("Info and Filters"):
|
401 |
if st.button("Load/Reset Data", key='reset2'):
|
402 |
st.cache_data.clear()
|
403 |
-
|
404 |
-
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats(league_var)
|
405 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
406 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
407 |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|
|
|
270 |
array = pd.DataFrame(array, columns=column_names)
|
271 |
return array.to_csv().encode('utf-8')
|
272 |
|
273 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats('NBA')
|
|
|
274 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
275 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
276 |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|
|
|
298 |
with col2:
|
299 |
if st.button("Load/Reset Data", key='reset1'):
|
300 |
st.cache_data.clear()
|
301 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats('NBA')
|
|
|
302 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
303 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
304 |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|
|
|
316 |
view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
|
317 |
with col2:
|
318 |
league_var = st.radio("What League to load:", ('NBA', 'WNBA'), key='league_var')
|
319 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats(league_var)
|
320 |
with col3:
|
321 |
slate_type_var2 = st.radio("What slate type are you working with?", ('Regular', 'Showdown'), key='slate_type_var2')
|
322 |
with col4:
|
|
|
399 |
with st.expander("Info and Filters"):
|
400 |
if st.button("Load/Reset Data", key='reset2'):
|
401 |
st.cache_data.clear()
|
402 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, sd_raw, dk_sd_raw, fd_sd_raw, timestamp = load_overall_stats('NBA')
|
|
|
403 |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
404 |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
405 |
salary_dict_sd = dict(zip(sd_raw.Player, sd_raw.Salary))
|