Spaces:
Running
Running
James McCool
commited on
Commit
·
d4642ad
1
Parent(s):
379842b
added seed frame frequencies
Browse files
app.py
CHANGED
@@ -513,35 +513,70 @@ with tab2:
|
|
513 |
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
|
514 |
|
515 |
with st.container():
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
534 |
|
535 |
-
|
536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
data=convert_df_to_csv(summary_df),
|
545 |
-
file_name='NBA_player_frequency.csv',
|
546 |
-
mime='text/csv',
|
547 |
-
)
|
|
|
513 |
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
|
514 |
|
515 |
with st.container():
|
516 |
+
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
|
517 |
+
with tab1:
|
518 |
+
if 'data_export_display' in st.session_state:
|
519 |
+
if site_var1 == 'Draftkings':
|
520 |
+
player_columns = st.session_state.data_export_display.iloc[:, :8]
|
521 |
+
elif site_var1 == 'Fanduel':
|
522 |
+
player_columns = st.session_state.data_export_display.iloc[:, :9]
|
523 |
+
|
524 |
+
# Flatten the DataFrame and count unique values
|
525 |
+
value_counts = player_columns.values.flatten().tolist()
|
526 |
+
value_counts = pd.Series(value_counts).value_counts()
|
527 |
+
|
528 |
+
percentages = (value_counts / lineup_num_var * 100).round(2)
|
529 |
+
|
530 |
+
# Create a DataFrame with the results
|
531 |
+
summary_df = pd.DataFrame({
|
532 |
+
'Player': value_counts.index,
|
533 |
+
'Frequency': value_counts.values,
|
534 |
+
'Percentage': percentages.values
|
535 |
+
})
|
536 |
+
|
537 |
+
# Sort by frequency in descending order
|
538 |
+
summary_df = summary_df.sort_values('Frequency', ascending=False)
|
539 |
+
|
540 |
+
# Display the table
|
541 |
+
st.write("Player Frequency Table:")
|
542 |
+
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
|
543 |
|
544 |
+
st.download_button(
|
545 |
+
label="Export player frequency",
|
546 |
+
data=convert_df_to_csv(summary_df),
|
547 |
+
file_name='NBA_player_frequency.csv',
|
548 |
+
mime='text/csv',
|
549 |
+
)
|
550 |
+
with tab2:
|
551 |
+
if 'working_seed' in st.session_state:
|
552 |
+
if site_var1 == 'Draftkings':
|
553 |
+
player_columns = st.session_state.working_seed.iloc[:, :8]
|
554 |
+
elif site_var1 == 'Fanduel':
|
555 |
+
player_columns = st.session_state.working_seed.iloc[:, :9]
|
556 |
+
|
557 |
+
# Flatten the DataFrame and count unique values
|
558 |
+
value_counts = player_columns.values.flatten().tolist()
|
559 |
+
value_counts = pd.Series(value_counts).value_counts()
|
560 |
+
|
561 |
+
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
|
562 |
+
|
563 |
+
# Create a DataFrame with the results
|
564 |
+
summary_df = pd.DataFrame({
|
565 |
+
'Player': value_counts.index,
|
566 |
+
'Frequency': value_counts.values,
|
567 |
+
'Percentage': percentages.values
|
568 |
+
})
|
569 |
+
|
570 |
+
# Sort by frequency in descending order
|
571 |
+
summary_df = summary_df.sort_values('Frequency', ascending=False)
|
572 |
+
|
573 |
+
# Display the table
|
574 |
+
st.write("Seed Frame Frequency Table:")
|
575 |
+
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
|
576 |
|
577 |
+
st.download_button(
|
578 |
+
label="Export seed frame frequency",
|
579 |
+
data=convert_df_to_csv(summary_df),
|
580 |
+
file_name='NBA_seed_frame_frequency.csv',
|
581 |
+
mime='text/csv',
|
582 |
+
)
|
|
|
|
|
|
|
|