Spaces:
Running
Running
James McCool
commited on
Commit
·
f4dd7c9
1
Parent(s):
e3896eb
Transferred DFS data to mongo, established connections
Browse files
app.py
CHANGED
@@ -55,50 +55,68 @@ fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'sal
|
|
55 |
|
56 |
@st.cache_data(ttl=300)
|
57 |
def load_overall_stats():
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
raw_display =
|
65 |
-
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
|
66 |
-
raw_display = raw_display.loc[raw_display['Salary'] > 0]
|
67 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
68 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
69 |
dk_raw = raw_display.sort_values(by='Median', ascending=False)
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
75 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
76 |
fd_raw = raw_display.sort_values(by='Median', ascending=False)
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
82 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
83 |
dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
88 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
89 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
90 |
fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
94 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
95 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
96 |
roo_raw = raw_display.sort_values(by='Median', ascending=False)
|
97 |
|
98 |
timestamp = raw_display['timestamp'].values[0]
|
99 |
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
roo_backlog = raw_display.sort_values(by='Date', ascending=False)
|
103 |
roo_backlog = roo_backlog[roo_backlog['slate'] == 'Main Slate']
|
104 |
|
|
|
55 |
|
56 |
@st.cache_data(ttl=300)
|
57 |
def load_overall_stats():
|
58 |
+
collection = db["DK_Player_Stats"]
|
59 |
+
cursor = collection.find()
|
60 |
+
|
61 |
+
raw_display = pd.DataFrame(list(cursor))
|
62 |
+
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
63 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
64 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
|
|
|
|
65 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
66 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
67 |
dk_raw = raw_display.sort_values(by='Median', ascending=False)
|
68 |
|
69 |
+
collection = db["FD_Player_Stats"]
|
70 |
+
cursor = collection.find()
|
71 |
+
|
72 |
+
raw_display = pd.DataFrame(list(cursor))
|
73 |
+
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
74 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
75 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
76 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
77 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
78 |
fd_raw = raw_display.sort_values(by='Median', ascending=False)
|
79 |
|
80 |
+
collection = db["Secondary_DK_Player_Stats"]
|
81 |
+
cursor = collection.find()
|
82 |
+
|
83 |
+
raw_display = pd.DataFrame(list(cursor))
|
84 |
+
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
85 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
86 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
87 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
88 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
89 |
dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
90 |
|
91 |
+
collection = db["Secondary_FD_Player_Stats"]
|
92 |
+
cursor = collection.find()
|
93 |
+
|
94 |
+
raw_display = pd.DataFrame(list(cursor))
|
95 |
+
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
96 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
97 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
98 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
99 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
100 |
fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
101 |
|
102 |
+
collection = db["Player_Range_Of_Outcomes"]
|
103 |
+
cursor = collection.find()
|
104 |
+
|
105 |
+
raw_display = pd.DataFrame(list(cursor))
|
106 |
+
raw_display = raw_display[['Player', 'Minutes', 'Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Cei', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
107 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp']]
|
108 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
109 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
110 |
roo_raw = raw_display.sort_values(by='Median', ascending=False)
|
111 |
|
112 |
timestamp = raw_display['timestamp'].values[0]
|
113 |
|
114 |
+
collection = db["Range_Of_Outcomes_Backlog"]
|
115 |
+
cursor = collection.find()
|
116 |
+
|
117 |
+
raw_display = pd.DataFrame(list(cursor))
|
118 |
+
raw_display = raw_display[['Player', 'Minutes', 'Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Cei', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
119 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'Date']]
|
120 |
roo_backlog = raw_display.sort_values(by='Date', ascending=False)
|
121 |
roo_backlog = roo_backlog[roo_backlog['slate'] == 'Main Slate']
|
122 |
|