Spaces:
Runtime error
Runtime error
File size: 12,928 Bytes
eb17727 c276129 eb17727 c276129 67e2e04 f81438a bf83885 588d083 c276129 f81438a cc95c78 eb17727 d9ad3e8 c276129 d9ad3e8 eb17727 c276129 eb17727 d9ad3e8 eb17727 d9ad3e8 6919d54 eb17727 c276129 f7d4c5a d9ad3e8 6919d54 c276129 f7d4c5a c276129 6919d54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import gc
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
gc_con = gspread.service_account_from_dict(credentials, scope)
return gc_con
gcservice_account = init_conn()
NBA_Data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
@st.cache_resource(ttl = 600)
def init_baselines():
sh = gcservice_account.open_by_url(NBA_Data)
worksheet = sh.worksheet('Gamelog')
raw_display = pd.DataFrame(worksheet.get_values())
raw_display.columns = raw_display.iloc[0]
raw_display = raw_display[1:]
raw_display = raw_display.reset_index(drop=True)
gamelog_table = raw_display[raw_display['PLAYER_NAME'] != ""]
gamelog_table = gamelog_table[['PLAYER_NAME', 'TEAM_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP', 'MIN', 'touches', 'PTS', 'FGM', 'FGA', 'FG_PCT', 'FG3M', 'FG3A',
'FG3_PCT', 'FTM', 'FTA', 'FT_PCT', 'reboundChancesOffensive', 'OREB', 'reboundChancesDefensive', 'DREB', 'reboundChancesTotal', 'REB',
'passes', 'secondaryAssists', 'freeThrowAssists', 'assists', 'STL', 'BLK', 'TOV', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy']]
gamelog_table['assists'].replace("", 0, inplace=True)
gamelog_table['reboundChancesTotal'].replace("", 0, inplace=True)
gamelog_table['passes'].replace("", 0, inplace=True)
gamelog_table['touches'].replace("", 0, inplace=True)
gamelog_table['Fantasy'].replace("", 0, inplace=True)
gamelog_table['FD_Fantasy'].replace("", 0, inplace=True)
gamelog_table['REB'] = gamelog_table['REB'].astype(int)
gamelog_table['assists'] = gamelog_table['assists'].astype(int)
gamelog_table['reboundChancesTotal'] = gamelog_table['reboundChancesTotal'].astype(int)
gamelog_table['passes'] = gamelog_table['passes'].astype(int)
gamelog_table['touches'] = gamelog_table['touches'].astype(int)
gamelog_table['Fantasy'] = gamelog_table['Fantasy'].astype(float)
gamelog_table['FD_Fantasy'] = gamelog_table['FD_Fantasy'].astype(float)
gamelog_table['rebound%'] = gamelog_table['REB'] / gamelog_table['reboundChancesTotal']
gamelog_table['assists_per_pass'] = gamelog_table['assists'] / gamelog_table['passes']
gamelog_table['Fantasy_per_touch'] = gamelog_table['Fantasy'] / gamelog_table['touches']
gamelog_table['FD_Fantasy_per_touch'] = gamelog_table['FD_Fantasy'] / gamelog_table['touches']
data_cols = gamelog_table.columns.drop(['PLAYER_NAME', 'TEAM_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP'])
gamelog_table[data_cols] = gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
return gamelog_table
@st.cache_data(show_spinner=False)
def seasonlong_build(data_sample):
season_long_table = data_sample[['PLAYER_NAME', 'TEAM_NAME']]
season_long_table['MIN'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['MIN'].transform('mean').astype(float)
season_long_table['touches'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['touches'].transform('mean').astype(float)
season_long_table['FGM'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FGM'].transform('mean').astype(float)
season_long_table['FGA'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FGA'].transform('mean').astype(float)
season_long_table['FG_PCT'] = (data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FGM'].transform('sum').astype(int) /
data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FGA'].transform('sum').astype(int))
season_long_table['FG3M'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FG3M'].transform('mean').astype(float)
season_long_table['FG3A'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FG3A'].transform('mean').astype(float)
season_long_table['FG3_PCT'] = (data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FG3M'].transform('sum').astype(int) /
data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FG3A'].transform('sum').astype(int))
season_long_table['FTM'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FTM'].transform('mean').astype(float)
season_long_table['FTA'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FTA'].transform('mean').astype(float)
season_long_table['FT_PCT'] = (data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FTM'].transform('sum').astype(int) /
data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FTA'].transform('sum').astype(int))
season_long_table['reboundChancesOffensive'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['reboundChancesOffensive'].transform('mean').astype(float)
season_long_table['OREB'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['OREB'].transform('mean').astype(float)
season_long_table['reboundChancesDefensive'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['reboundChancesDefensive'].transform('mean').astype(float)
season_long_table['DREB'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['DREB'].transform('mean').astype(float)
season_long_table['reboundChancesTotal'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['reboundChancesTotal'].transform('mean').astype(float)
season_long_table['REB'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['REB'].transform('mean').astype(float)
season_long_table['passes'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['passes'].transform('mean').astype(float)
season_long_table['secondaryAssists'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['secondaryAssists'].transform('mean').astype(float)
season_long_table['freeThrowAssists'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['freeThrowAssists'].transform('mean').astype(float)
season_long_table['assists'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['assists'].transform('mean').astype(float)
season_long_table['STL'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['STL'].transform('mean').astype(float)
season_long_table['BLK'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['BLK'].transform('mean').astype(float)
season_long_table['TOV'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['TOV'].transform('mean').astype(float)
season_long_table['PF'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['PF'].transform('mean').astype(float)
season_long_table['DD'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['DD'].transform('mean').astype(float)
season_long_table['TD'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['TD'].transform('mean').astype(float)
season_long_table['Fantasy'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['Fantasy'].transform('mean').astype(float)
season_long_table['FD_Fantasy'] = data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FD_Fantasy'].transform('mean').astype(float)
season_long_table['rebound%'] = (data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['REB'].transform('sum').astype(int) /
data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['reboundChancesTotal'].transform('sum').astype(int))
season_long_table['assists_per_pass'] = (data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['assists'].transform('sum').astype(int) /
data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['passes'].transform('sum').astype(int))
season_long_table['Fantasy_per_touch'] = (data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['Fantasy'].transform('sum').astype(int) /
data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['touches'].transform('sum').astype(int))
season_long_table['FD_Fantasy_per_touch'] = (data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['FD_Fantasy'].transform('sum').astype(int) /
data_sample.groupby(['PLAYER_NAME', 'SEASON_ID'], sort=False)['touches'].transform('sum').astype(int))
season_long_table = season_long_table.drop_duplicates(subset='PLAYER_NAME')
return season_long_table
@st.cache_data(show_spinner=False)
def split_frame(input_df, rows):
df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)]
return df
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
gamelog_table = init_baselines()
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
gamelog_table = init_baselines()
split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='split_var1')
with col2:
if split_var1 == 'Season Logs':
display = st.container()
season_long_table = seasonlong_build(gamelog_table)
display.dataframe(season_long_table.style.format(precision=2), use_container_width = True)
elif split_var1 == 'Gamelogs':
display = st.container()
bottom_menu = st.columns((4, 1, 1))
with bottom_menu[2]:
batch_size = st.selectbox("Page Size", options=[25, 50, 100])
with bottom_menu[1]:
total_pages = (
int(len(gamelog_table) / batch_size) if int(len(gamelog_table) / batch_size) > 0 else 1
)
current_page = st.number_input(
"Page", min_value=1, max_value=total_pages, step=1
)
with bottom_menu[0]:
st.markdown(f"Page **{current_page}** of **{total_pages}** ")
pages = split_frame(gamelog_table, batch_size)
display.dataframe(data=pages[current_page - 1].style.format(precision=2), use_container_width=True) |