Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -78,48 +78,48 @@ def init_baselines():
|
|
78 |
|
79 |
@st.cache_data(show_spinner=False)
|
80 |
def seasonlong_build(data_sample):
|
81 |
-
season_long_table = data_sample[['
|
82 |
-
season_long_table['Min'] = data_sample.groupby(['
|
83 |
-
season_long_table['Touches'] = data_sample.groupby(['
|
84 |
-
season_long_table['FGM'] = data_sample.groupby(['
|
85 |
-
season_long_table['FGA'] = data_sample.groupby(['
|
86 |
-
season_long_table['FG%'] = (data_sample.groupby(['
|
87 |
-
data_sample.groupby(['
|
88 |
-
season_long_table['FG3M'] = data_sample.groupby(['
|
89 |
-
season_long_table['FG3A'] = data_sample.groupby(['
|
90 |
-
season_long_table['FG3%'] = (data_sample.groupby(['
|
91 |
-
data_sample.groupby(['
|
92 |
-
season_long_table['FTM'] = data_sample.groupby(['
|
93 |
-
season_long_table['FTA'] = data_sample.groupby(['
|
94 |
-
season_long_table['FT%'] = (data_sample.groupby(['
|
95 |
-
data_sample.groupby(['
|
96 |
-
season_long_table['OREB Chance'] = data_sample.groupby(['
|
97 |
-
season_long_table['OREB'] = data_sample.groupby(['
|
98 |
-
season_long_table['DREB Chance'] = data_sample.groupby(['
|
99 |
-
season_long_table['DREB'] = data_sample.groupby(['
|
100 |
-
season_long_table['REB Chance'] = data_sample.groupby(['
|
101 |
-
season_long_table['REB'] = data_sample.groupby(['
|
102 |
-
season_long_table['Passes'] = data_sample.groupby(['
|
103 |
-
season_long_table['Alt Assists'] = data_sample.groupby(['
|
104 |
-
season_long_table['FT Assists'] = data_sample.groupby(['
|
105 |
-
season_long_table['Assists'] = data_sample.groupby(['
|
106 |
-
season_long_table['Stl'] = data_sample.groupby(['
|
107 |
-
season_long_table['Blk'] = data_sample.groupby(['
|
108 |
-
season_long_table['Tov'] = data_sample.groupby(['
|
109 |
-
season_long_table['PF'] = data_sample.groupby(['
|
110 |
-
season_long_table['DD'] = data_sample.groupby(['
|
111 |
-
season_long_table['TD'] = data_sample.groupby(['
|
112 |
-
season_long_table['Fantasy'] = data_sample.groupby(['
|
113 |
-
season_long_table['FD_Fantasy'] = data_sample.groupby(['
|
114 |
-
season_long_table['Rebound%'] = (data_sample.groupby(['
|
115 |
-
data_sample.groupby(['
|
116 |
-
season_long_table['Assists/Pass'] = (data_sample.groupby(['
|
117 |
-
data_sample.groupby(['
|
118 |
-
season_long_table['Fantasy/Touch'] = (data_sample.groupby(['
|
119 |
-
data_sample.groupby(['
|
120 |
-
season_long_table['FD Fantasy/Touch'] = (data_sample.groupby(['
|
121 |
-
data_sample.groupby(['
|
122 |
-
season_long_table = season_long_table.drop_duplicates(subset='
|
123 |
|
124 |
season_long_table = season_long_table.set_axis(['Player', 'Team', 'Season', 'Date', 'Matchup', 'Min', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
|
125 |
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
|
@@ -158,6 +158,7 @@ with col2:
|
|
158 |
display = st.container()
|
159 |
gamelog_table = gamelog_table[gamelog_table['Team'].isin(team_var1)]
|
160 |
season_long_table = seasonlong_build(gamelog_table)
|
|
|
161 |
display.dataframe(season_long_table.style.format(precision=2), use_container_width = True)
|
162 |
|
163 |
elif split_var1 == 'Gamelogs':
|
@@ -176,5 +177,6 @@ with col2:
|
|
176 |
with bottom_menu[0]:
|
177 |
st.markdown(f"Page **{current_page}** of **{total_pages}** ")
|
178 |
gamelog_table = gamelog_table[gamelog_table['Team'].isin(team_var1)]
|
|
|
179 |
pages = split_frame(gamelog_table, batch_size)
|
180 |
display.dataframe(data=pages[current_page - 1].style.format(precision=2), use_container_width=True)
|
|
|
78 |
|
79 |
@st.cache_data(show_spinner=False)
|
80 |
def seasonlong_build(data_sample):
|
81 |
+
season_long_table = data_sample[['Player', 'Team']]
|
82 |
+
season_long_table['Min'] = data_sample.groupby(['Player', 'Season'], sort=False)['Min'].transform('mean').astype(float)
|
83 |
+
season_long_table['Touches'] = data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('mean').astype(float)
|
84 |
+
season_long_table['FGM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('mean').astype(float)
|
85 |
+
season_long_table['FGA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('mean').astype(float)
|
86 |
+
season_long_table['FG%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('sum').astype(int) /
|
87 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('sum').astype(int))
|
88 |
+
season_long_table['FG3M'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('mean').astype(float)
|
89 |
+
season_long_table['FG3A'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('mean').astype(float)
|
90 |
+
season_long_table['FG3%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('sum').astype(int) /
|
91 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('sum').astype(int))
|
92 |
+
season_long_table['FTM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('mean').astype(float)
|
93 |
+
season_long_table['FTA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('mean').astype(float)
|
94 |
+
season_long_table['FT%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('sum').astype(int) /
|
95 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('sum').astype(int))
|
96 |
+
season_long_table['OREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB Chance'].transform('mean').astype(float)
|
97 |
+
season_long_table['OREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB'].transform('mean').astype(float)
|
98 |
+
season_long_table['DREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB Chance'].transform('mean').astype(float)
|
99 |
+
season_long_table['DREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB'].transform('mean').astype(float)
|
100 |
+
season_long_table['REB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('mean').astype(float)
|
101 |
+
season_long_table['REB'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('mean').astype(float)
|
102 |
+
season_long_table['Passes'] = data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('mean').astype(float)
|
103 |
+
season_long_table['Alt Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Alt Assists'].transform('mean').astype(float)
|
104 |
+
season_long_table['FT Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['FT Assists'].transform('mean').astype(float)
|
105 |
+
season_long_table['Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('mean').astype(float)
|
106 |
+
season_long_table['Stl'] = data_sample.groupby(['Player', 'Season'], sort=False)['Stl'].transform('mean').astype(float)
|
107 |
+
season_long_table['Blk'] = data_sample.groupby(['Player', 'Season'], sort=False)['Blk'].transform('mean').astype(float)
|
108 |
+
season_long_table['Tov'] = data_sample.groupby(['Player', 'Season'], sort=False)['Tov'].transform('mean').astype(float)
|
109 |
+
season_long_table['PF'] = data_sample.groupby(['Player', 'Season'], sort=False)['PF'].transform('mean').astype(float)
|
110 |
+
season_long_table['DD'] = data_sample.groupby(['Player', 'Season'], sort=False)['DD'].transform('mean').astype(float)
|
111 |
+
season_long_table['TD'] = data_sample.groupby(['Player', 'Season'], sort=False)['TD'].transform('mean').astype(float)
|
112 |
+
season_long_table['Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('mean').astype(float)
|
113 |
+
season_long_table['FD_Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('mean').astype(float)
|
114 |
+
season_long_table['Rebound%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('sum').astype(int) /
|
115 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['reboundChancesTotal'].transform('sum').astype(int))
|
116 |
+
season_long_table['Assists/Pass'] = (data_sample.groupby(['Player', 'Season'], sort=False)['assists'].transform('sum').astype(int) /
|
117 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['passes'].transform('sum').astype(int))
|
118 |
+
season_long_table['Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('sum').astype(int) /
|
119 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['touches'].transform('sum').astype(int))
|
120 |
+
season_long_table['FD Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('sum').astype(int) /
|
121 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['touches'].transform('sum').astype(int))
|
122 |
+
season_long_table = season_long_table.drop_duplicates(subset='Player')
|
123 |
|
124 |
season_long_table = season_long_table.set_axis(['Player', 'Team', 'Season', 'Date', 'Matchup', 'Min', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
|
125 |
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
|
|
|
158 |
display = st.container()
|
159 |
gamelog_table = gamelog_table[gamelog_table['Team'].isin(team_var1)]
|
160 |
season_long_table = seasonlong_build(gamelog_table)
|
161 |
+
season_long_table = season_long_table.set_index('Player')
|
162 |
display.dataframe(season_long_table.style.format(precision=2), use_container_width = True)
|
163 |
|
164 |
elif split_var1 == 'Gamelogs':
|
|
|
177 |
with bottom_menu[0]:
|
178 |
st.markdown(f"Page **{current_page}** of **{total_pages}** ")
|
179 |
gamelog_table = gamelog_table[gamelog_table['Team'].isin(team_var1)]
|
180 |
+
gamelog_table = gamelog_table.set_index('Player')
|
181 |
pages = split_frame(gamelog_table, batch_size)
|
182 |
display.dataframe(data=pages[current_page - 1].style.format(precision=2), use_container_width=True)
|