Spaces:
Sleeping
Sleeping
File size: 15,877 Bytes
5691552 19c0bf6 5691552 91c7844 19c0bf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import random
import gc
tab1, tab2 = st.tabs(['Uploads', 'Manage Portfolio'])
with tab1:
with st.container():
col1, col2 = st.columns([3, 3])
with col1:
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'. Upload your projections first to avoid an error message.")
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
if proj_file is not None:
try:
proj_dataframe = pd.read_csv(proj_file)
proj_dataframe = proj_dataframe.dropna(subset='Median')
proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
try:
proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
except:
pass
except:
proj_dataframe = pd.read_excel(proj_file)
proj_dataframe = proj_dataframe.dropna(subset='Median')
proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
try:
proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
except:
pass
st.table(proj_dataframe.head(10))
player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
with col2:
st.info("The Portfolio file must contain only columns in order and explicitly named: 'PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', and 'UTIL'. Upload your projections first to avoid an error message.")
portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')
if portfolio_file is not None:
try:
portfolio_dataframe = pd.read_csv(portfolio_file)
except:
portfolio_dataframe = pd.read_excel(portfolio_file)
try:
try:
portfolio_dataframe.columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
split_portfolio = portfolio_dataframe
split_portfolio[['PG', 'PG_ID']] = split_portfolio.PG.str.split("(", n=1, expand = True)
split_portfolio[['SG', 'SG_ID']] = split_portfolio.SG.str.split("(", n=1, expand = True)
split_portfolio[['SF', 'SF_ID']] = split_portfolio.SF.str.split("(", n=1, expand = True)
split_portfolio[['PF', 'PF_ID']] = split_portfolio.PF.str.split("(", n=1, expand = True)
split_portfolio[['C', 'C_ID']] = split_portfolio.C.str.split("(", n=1, expand = True)
split_portfolio[['G', 'G_ID']] = split_portfolio.G.str.split("(", n=1, expand = True)
split_portfolio[['F', 'F_ID']] = split_portfolio.F.str.split("(", n=1, expand = True)
split_portfolio[['UTIL', 'UTIL_ID']] = split_portfolio.UTIL.str.split("(", n=1, expand = True)
split_portfolio['PG'] = split_portfolio['PG'].str.strip()
split_portfolio['SG'] = split_portfolio['SG'].str.strip()
split_portfolio['SF'] = split_portfolio['SF'].str.strip()
split_portfolio['PF'] = split_portfolio['PF'].str.strip()
split_portfolio['C'] = split_portfolio['C'].str.strip()
split_portfolio['G'] = split_portfolio['G'].str.strip()
split_portfolio['F'] = split_portfolio['F'].str.strip()
split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
split_portfolio['SG'].map(player_salary_dict),
split_portfolio['SF'].map(player_salary_dict),
split_portfolio['PF'].map(player_salary_dict),
split_portfolio['C'].map(player_salary_dict),
split_portfolio['G'].map(player_salary_dict),
split_portfolio['F'].map(player_salary_dict),
split_portfolio['UTIL'].map(player_salary_dict)])
split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
split_portfolio['SG'].map(player_proj_dict),
split_portfolio['SF'].map(player_proj_dict),
split_portfolio['PF'].map(player_proj_dict),
split_portfolio['C'].map(player_proj_dict),
split_portfolio['G'].map(player_proj_dict),
split_portfolio['F'].map(player_proj_dict),
split_portfolio['UTIL'].map(player_proj_dict)])
split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
split_portfolio['SG'].map(player_own_dict),
split_portfolio['SF'].map(player_own_dict),
split_portfolio['PF'].map(player_own_dict),
split_portfolio['C'].map(player_own_dict),
split_portfolio['G'].map(player_own_dict),
split_portfolio['F'].map(player_own_dict),
split_portfolio['UTIL'].map(player_own_dict)])
st.table(split_portfolio.head(10))
except:
portfolio_dataframe.columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
split_portfolio = portfolio_dataframe
split_portfolio[['PG_ID', 'PG']] = split_portfolio.PG.str.split(":", n=1, expand = True)
split_portfolio[['SG_ID', 'SG']] = split_portfolio.SG.str.split(":", n=1, expand = True)
split_portfolio[['SF_ID', 'SF']] = split_portfolio.SF.str.split(":", n=1, expand = True)
split_portfolio[['PF_ID', 'PF']] = split_portfolio.PF.str.split(":", n=1, expand = True)
split_portfolio[['C_ID', 'C']] = split_portfolio.C.str.split(":", n=1, expand = True)
split_portfolio[['G_ID', 'G']] = split_portfolio.G.str.split(":", n=1, expand = True)
split_portfolio[['F_ID', 'F']] = split_portfolio.F.str.split(":", n=1, expand = True)
split_portfolio[['UTIL_ID', 'UTIL']] = split_portfolio.UTIL.str.split(":", n=1, expand = True)
split_portfolio['PG'] = split_portfolio['PG'].str.strip()
split_portfolio['SG'] = split_portfolio['SG'].str.strip()
split_portfolio['SF'] = split_portfolio['SF'].str.strip()
split_portfolio['PF'] = split_portfolio['PF'].str.strip()
split_portfolio['C'] = split_portfolio['C'].str.strip()
split_portfolio['G'] = split_portfolio['G'].str.strip()
split_portfolio['F'] = split_portfolio['F'].str.strip()
split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
split_portfolio['SG'].map(player_salary_dict),
split_portfolio['SF'].map(player_salary_dict),
split_portfolio['PF'].map(player_salary_dict),
split_portfolio['C'].map(player_salary_dict),
split_portfolio['G'].map(player_salary_dict),
split_portfolio['F'].map(player_salary_dict),
split_portfolio['UTIL'].map(player_salary_dict)])
split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
split_portfolio['SG'].map(player_proj_dict),
split_portfolio['SF'].map(player_proj_dict),
split_portfolio['PF'].map(player_proj_dict),
split_portfolio['C'].map(player_proj_dict),
split_portfolio['G'].map(player_proj_dict),
split_portfolio['F'].map(player_proj_dict),
split_portfolio['UTIL'].map(player_proj_dict)])
split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
split_portfolio['SG'].map(player_own_dict),
split_portfolio['SF'].map(player_own_dict),
split_portfolio['PF'].map(player_own_dict),
split_portfolio['C'].map(player_own_dict),
split_portfolio['G'].map(player_own_dict),
split_portfolio['F'].map(player_own_dict),
split_portfolio['UTIL'].map(player_own_dict)])
st.table(split_portfolio.head(10))
except:
split_portfolio = portfolio_dataframe
split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
split_portfolio['SG'].map(player_salary_dict),
split_portfolio['SF'].map(player_salary_dict),
split_portfolio['PF'].map(player_salary_dict),
split_portfolio['C'].map(player_salary_dict),
split_portfolio['G'].map(player_salary_dict),
split_portfolio['F'].map(player_salary_dict),
split_portfolio['UTIL'].map(player_salary_dict)])
split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
split_portfolio['SG'].map(player_proj_dict),
split_portfolio['SF'].map(player_proj_dict),
split_portfolio['PF'].map(player_proj_dict),
split_portfolio['C'].map(player_proj_dict),
split_portfolio['G'].map(player_proj_dict),
split_portfolio['F'].map(player_proj_dict),
split_portfolio['UTIL'].map(player_proj_dict)])
split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
split_portfolio['SG'].map(player_own_dict),
split_portfolio['SF'].map(player_own_dict),
split_portfolio['PF'].map(player_own_dict),
split_portfolio['C'].map(player_own_dict),
split_portfolio['G'].map(player_own_dict),
split_portfolio['F'].map(player_own_dict),
split_portfolio['UTIL'].map(player_own_dict)])
display_portfolio = split_portfolio[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'Salary', 'Projection', 'Ownership']]
hold_portfolio = display_portfolio.sort_values(by='Projection', ascending=False)
gc.collect()
with tab2:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset1'):
display_portfolio = hold_portfolio
if st.button("Trim Lineups", key='trim1'):
max_proj = 10000
max_own = 10000
x = 0
for index, row in display_portfolio.iterrows():
if row['Ownership'] > max_own:
max_own = row['Ownership']
display_portfolio.drop(index, inplace=True)
with col2:
with st.container():
st.dataframe(display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) |