File size: 15,877 Bytes
5691552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19c0bf6
 
5691552
 
91c7844
19c0bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import numpy as np
import pandas as pd
import streamlit as st
import gspread
import random
import gc

tab1, tab2 = st.tabs(['Uploads', 'Manage Portfolio'])

with tab1:
    with st.container():          
          col1, col2 = st.columns([3, 3])
          
          with col1:
                    st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'. Upload your projections first to avoid an error message.")
                    proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')

                    if proj_file is not None:
                              try:
                                        proj_dataframe = pd.read_csv(proj_file)
                                        proj_dataframe = proj_dataframe.dropna(subset='Median')
                                        proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
                                        try:
                                            proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
                                        except:
                                            pass
                                        
                              except:
                                        proj_dataframe = pd.read_excel(proj_file)
                                        proj_dataframe = proj_dataframe.dropna(subset='Median')
                                        proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
                                        try:
                                            proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
                                        except:
                                            pass
                              st.table(proj_dataframe.head(10))
                              player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
                              player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
                              player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
                              
          with col2:
                    st.info("The Portfolio file must contain only columns in order and explicitly named: 'PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', and 'UTIL'. Upload your projections first to avoid an error message.")
                    portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')

                    if portfolio_file is not None:
                            try:
                                      portfolio_dataframe = pd.read_csv(portfolio_file)
                                      
                            except:
                                      portfolio_dataframe = pd.read_excel(portfolio_file)
                              
                            try:
                                try:
                                    portfolio_dataframe.columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
                                    split_portfolio = portfolio_dataframe
                                    split_portfolio[['PG', 'PG_ID']] = split_portfolio.PG.str.split("(", n=1, expand = True)
                                    split_portfolio[['SG', 'SG_ID']] = split_portfolio.SG.str.split("(", n=1, expand = True)
                                    split_portfolio[['SF', 'SF_ID']] = split_portfolio.SF.str.split("(", n=1, expand = True)
                                    split_portfolio[['PF', 'PF_ID']] = split_portfolio.PF.str.split("(", n=1, expand = True)
                                    split_portfolio[['C', 'C_ID']] = split_portfolio.C.str.split("(", n=1, expand = True)
                                    split_portfolio[['G', 'G_ID']] = split_portfolio.G.str.split("(", n=1, expand = True)
                                    split_portfolio[['F', 'F_ID']] = split_portfolio.F.str.split("(", n=1, expand = True)
                                    split_portfolio[['UTIL', 'UTIL_ID']] = split_portfolio.UTIL.str.split("(", n=1, expand = True)
      
                                    split_portfolio['PG'] = split_portfolio['PG'].str.strip()
                                    split_portfolio['SG'] = split_portfolio['SG'].str.strip()
                                    split_portfolio['SF'] = split_portfolio['SF'].str.strip()
                                    split_portfolio['PF'] = split_portfolio['PF'].str.strip()
                                    split_portfolio['C'] = split_portfolio['C'].str.strip()
                                    split_portfolio['G'] = split_portfolio['G'].str.strip()
                                    split_portfolio['F'] = split_portfolio['F'].str.strip()
                                    split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
                                    
                                    split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
                                              split_portfolio['SG'].map(player_salary_dict),
                                              split_portfolio['SF'].map(player_salary_dict),
                                              split_portfolio['PF'].map(player_salary_dict),
                                              split_portfolio['C'].map(player_salary_dict),
                                              split_portfolio['G'].map(player_salary_dict),
                                              split_portfolio['F'].map(player_salary_dict),
                                              split_portfolio['UTIL'].map(player_salary_dict)])
                                    
                                    split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
                                              split_portfolio['SG'].map(player_proj_dict),
                                              split_portfolio['SF'].map(player_proj_dict),
                                              split_portfolio['PF'].map(player_proj_dict),
                                              split_portfolio['C'].map(player_proj_dict),
                                              split_portfolio['G'].map(player_proj_dict),
                                              split_portfolio['F'].map(player_proj_dict),
                                              split_portfolio['UTIL'].map(player_proj_dict)])
                                    
                                    split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
                                              split_portfolio['SG'].map(player_own_dict),
                                              split_portfolio['SF'].map(player_own_dict),
                                              split_portfolio['PF'].map(player_own_dict),
                                              split_portfolio['C'].map(player_own_dict),
                                              split_portfolio['G'].map(player_own_dict),
                                              split_portfolio['F'].map(player_own_dict),
                                              split_portfolio['UTIL'].map(player_own_dict)])
                                    
                                    st.table(split_portfolio.head(10))
                                
                                
                                except:
                                    portfolio_dataframe.columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
                                    
                                    split_portfolio = portfolio_dataframe
                                    split_portfolio[['PG_ID', 'PG']] = split_portfolio.PG.str.split(":", n=1, expand = True)
                                    split_portfolio[['SG_ID', 'SG']] = split_portfolio.SG.str.split(":", n=1, expand = True)
                                    split_portfolio[['SF_ID', 'SF']] = split_portfolio.SF.str.split(":", n=1, expand = True)
                                    split_portfolio[['PF_ID', 'PF']] = split_portfolio.PF.str.split(":", n=1, expand = True)
                                    split_portfolio[['C_ID', 'C']] = split_portfolio.C.str.split(":", n=1, expand = True)
                                    split_portfolio[['G_ID', 'G']] = split_portfolio.G.str.split(":", n=1, expand = True)
                                    split_portfolio[['F_ID', 'F']] = split_portfolio.F.str.split(":", n=1, expand = True)
                                    split_portfolio[['UTIL_ID', 'UTIL']] = split_portfolio.UTIL.str.split(":", n=1, expand = True)
                                    
                                    split_portfolio['PG'] = split_portfolio['PG'].str.strip()
                                    split_portfolio['SG'] = split_portfolio['SG'].str.strip()
                                    split_portfolio['SF'] = split_portfolio['SF'].str.strip()
                                    split_portfolio['PF'] = split_portfolio['PF'].str.strip()
                                    split_portfolio['C'] = split_portfolio['C'].str.strip()
                                    split_portfolio['G'] = split_portfolio['G'].str.strip()
                                    split_portfolio['F'] = split_portfolio['F'].str.strip()
                                    split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
      
                                    split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
                                              split_portfolio['SG'].map(player_salary_dict),
                                              split_portfolio['SF'].map(player_salary_dict),
                                              split_portfolio['PF'].map(player_salary_dict),
                                              split_portfolio['C'].map(player_salary_dict),
                                              split_portfolio['G'].map(player_salary_dict),
                                              split_portfolio['F'].map(player_salary_dict),
                                              split_portfolio['UTIL'].map(player_salary_dict)])
                                    
                                    split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
                                              split_portfolio['SG'].map(player_proj_dict),
                                              split_portfolio['SF'].map(player_proj_dict),
                                              split_portfolio['PF'].map(player_proj_dict),
                                              split_portfolio['C'].map(player_proj_dict),
                                              split_portfolio['G'].map(player_proj_dict),
                                              split_portfolio['F'].map(player_proj_dict),
                                              split_portfolio['UTIL'].map(player_proj_dict)])
                                                                    
                                    
                                    split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
                                              split_portfolio['SG'].map(player_own_dict),
                                              split_portfolio['SF'].map(player_own_dict),
                                              split_portfolio['PF'].map(player_own_dict),
                                              split_portfolio['C'].map(player_own_dict),
                                              split_portfolio['G'].map(player_own_dict),
                                              split_portfolio['F'].map(player_own_dict),
                                              split_portfolio['UTIL'].map(player_own_dict)])
                                    
                                    st.table(split_portfolio.head(10))
                                  
                            except:
                                 split_portfolio = portfolio_dataframe
                                
                                 split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
                                           split_portfolio['SG'].map(player_salary_dict),
                                           split_portfolio['SF'].map(player_salary_dict),
                                           split_portfolio['PF'].map(player_salary_dict),
                                           split_portfolio['C'].map(player_salary_dict),
                                           split_portfolio['G'].map(player_salary_dict),
                                           split_portfolio['F'].map(player_salary_dict),
                                           split_portfolio['UTIL'].map(player_salary_dict)])
                                 
                                 split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
                                           split_portfolio['SG'].map(player_proj_dict),
                                           split_portfolio['SF'].map(player_proj_dict),
                                           split_portfolio['PF'].map(player_proj_dict),
                                           split_portfolio['C'].map(player_proj_dict),
                                           split_portfolio['G'].map(player_proj_dict),
                                           split_portfolio['F'].map(player_proj_dict),
                                           split_portfolio['UTIL'].map(player_proj_dict)])
                                                                 
                                 
                                 split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
                                           split_portfolio['SG'].map(player_own_dict),
                                           split_portfolio['SF'].map(player_own_dict),
                                           split_portfolio['PF'].map(player_own_dict),
                                           split_portfolio['C'].map(player_own_dict),
                                           split_portfolio['G'].map(player_own_dict),
                                           split_portfolio['F'].map(player_own_dict),
                                           split_portfolio['UTIL'].map(player_own_dict)])
                                 
                            display_portfolio = split_portfolio[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'Salary', 'Projection', 'Ownership']]
                            hold_portfolio = display_portfolio.sort_values(by='Projection', ascending=False)
                            gc.collect() 
                            
with tab2:
    col1, col2 = st.columns([1, 7])
    with col1:
        if st.button("Load/Reset Data", key='reset1'):
            display_portfolio = hold_portfolio
        if st.button("Trim Lineups", key='trim1'):
            max_proj = 10000
            max_own = 10000
            x = 0
            for index, row in display_portfolio.iterrows():
                if row['Ownership'] > max_own:
                    max_own = row['Ownership']
                    display_portfolio.drop(index, inplace=True)
                    
    with col2:    
        with st.container():
            st.dataframe(display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)