Spaces:
Sleeping
Sleeping
File size: 25,100 Bytes
5691552 19c0bf6 e25c986 19c0bf6 e25c986 2642564 e25c986 a6ed169 e25c986 5691552 91c7844 6a41823 06ac978 6a41823 e22e87f 6a41823 f240735 6a41823 19c0bf6 6a41823 f240735 6a41823 f240735 6a41823 c2af5d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import random
import gc
tab1, tab2 = st.tabs(['Uploads', 'Manage Portfolio'])
with tab1:
with st.container():
col1, col2 = st.columns([3, 3])
with col1:
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'. Upload your projections first to avoid an error message.")
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
if proj_file is not None:
try:
proj_dataframe = pd.read_csv(proj_file)
proj_dataframe = proj_dataframe.dropna(subset='Median')
proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
try:
proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
except:
pass
except:
proj_dataframe = pd.read_excel(proj_file)
proj_dataframe = proj_dataframe.dropna(subset='Median')
proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
try:
proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
except:
pass
st.table(proj_dataframe.head(10))
player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
with col2:
st.info("The Portfolio file must contain only columns in order and explicitly named: 'PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', and 'UTIL'. Upload your projections first to avoid an error message.")
portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')
if portfolio_file is not None:
try:
portfolio_dataframe = pd.read_csv(portfolio_file)
except:
portfolio_dataframe = pd.read_excel(portfolio_file)
try:
try:
portfolio_dataframe.columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
split_portfolio = portfolio_dataframe
split_portfolio[['PG', 'PG_ID']] = split_portfolio.PG.str.split("(", n=1, expand = True)
split_portfolio[['SG', 'SG_ID']] = split_portfolio.SG.str.split("(", n=1, expand = True)
split_portfolio[['SF', 'SF_ID']] = split_portfolio.SF.str.split("(", n=1, expand = True)
split_portfolio[['PF', 'PF_ID']] = split_portfolio.PF.str.split("(", n=1, expand = True)
split_portfolio[['C', 'C_ID']] = split_portfolio.C.str.split("(", n=1, expand = True)
split_portfolio[['G', 'G_ID']] = split_portfolio.G.str.split("(", n=1, expand = True)
split_portfolio[['F', 'F_ID']] = split_portfolio.F.str.split("(", n=1, expand = True)
split_portfolio[['UTIL', 'UTIL_ID']] = split_portfolio.UTIL.str.split("(", n=1, expand = True)
split_portfolio['PG'] = split_portfolio['PG'].str.strip()
split_portfolio['SG'] = split_portfolio['SG'].str.strip()
split_portfolio['SF'] = split_portfolio['SF'].str.strip()
split_portfolio['PF'] = split_portfolio['PF'].str.strip()
split_portfolio['C'] = split_portfolio['C'].str.strip()
split_portfolio['G'] = split_portfolio['G'].str.strip()
split_portfolio['F'] = split_portfolio['F'].str.strip()
split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
split_portfolio['SG'].map(player_salary_dict),
split_portfolio['SF'].map(player_salary_dict),
split_portfolio['PF'].map(player_salary_dict),
split_portfolio['C'].map(player_salary_dict),
split_portfolio['G'].map(player_salary_dict),
split_portfolio['F'].map(player_salary_dict),
split_portfolio['UTIL'].map(player_salary_dict)])
split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
split_portfolio['SG'].map(player_proj_dict),
split_portfolio['SF'].map(player_proj_dict),
split_portfolio['PF'].map(player_proj_dict),
split_portfolio['C'].map(player_proj_dict),
split_portfolio['G'].map(player_proj_dict),
split_portfolio['F'].map(player_proj_dict),
split_portfolio['UTIL'].map(player_proj_dict)])
split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
split_portfolio['SG'].map(player_own_dict),
split_portfolio['SF'].map(player_own_dict),
split_portfolio['PF'].map(player_own_dict),
split_portfolio['C'].map(player_own_dict),
split_portfolio['G'].map(player_own_dict),
split_portfolio['F'].map(player_own_dict),
split_portfolio['UTIL'].map(player_own_dict)])
st.table(split_portfolio.head(10))
except:
portfolio_dataframe.columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
split_portfolio = portfolio_dataframe
split_portfolio[['PG_ID', 'PG']] = split_portfolio.PG.str.split(":", n=1, expand = True)
split_portfolio[['SG_ID', 'SG']] = split_portfolio.SG.str.split(":", n=1, expand = True)
split_portfolio[['SF_ID', 'SF']] = split_portfolio.SF.str.split(":", n=1, expand = True)
split_portfolio[['PF_ID', 'PF']] = split_portfolio.PF.str.split(":", n=1, expand = True)
split_portfolio[['C_ID', 'C']] = split_portfolio.C.str.split(":", n=1, expand = True)
split_portfolio[['G_ID', 'G']] = split_portfolio.G.str.split(":", n=1, expand = True)
split_portfolio[['F_ID', 'F']] = split_portfolio.F.str.split(":", n=1, expand = True)
split_portfolio[['UTIL_ID', 'UTIL']] = split_portfolio.UTIL.str.split(":", n=1, expand = True)
split_portfolio['PG'] = split_portfolio['PG'].str.strip()
split_portfolio['SG'] = split_portfolio['SG'].str.strip()
split_portfolio['SF'] = split_portfolio['SF'].str.strip()
split_portfolio['PF'] = split_portfolio['PF'].str.strip()
split_portfolio['C'] = split_portfolio['C'].str.strip()
split_portfolio['G'] = split_portfolio['G'].str.strip()
split_portfolio['F'] = split_portfolio['F'].str.strip()
split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
split_portfolio['SG'].map(player_salary_dict),
split_portfolio['SF'].map(player_salary_dict),
split_portfolio['PF'].map(player_salary_dict),
split_portfolio['C'].map(player_salary_dict),
split_portfolio['G'].map(player_salary_dict),
split_portfolio['F'].map(player_salary_dict),
split_portfolio['UTIL'].map(player_salary_dict)])
split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
split_portfolio['SG'].map(player_proj_dict),
split_portfolio['SF'].map(player_proj_dict),
split_portfolio['PF'].map(player_proj_dict),
split_portfolio['C'].map(player_proj_dict),
split_portfolio['G'].map(player_proj_dict),
split_portfolio['F'].map(player_proj_dict),
split_portfolio['UTIL'].map(player_proj_dict)])
split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
split_portfolio['SG'].map(player_own_dict),
split_portfolio['SF'].map(player_own_dict),
split_portfolio['PF'].map(player_own_dict),
split_portfolio['C'].map(player_own_dict),
split_portfolio['G'].map(player_own_dict),
split_portfolio['F'].map(player_own_dict),
split_portfolio['UTIL'].map(player_own_dict)])
st.table(split_portfolio.head(10))
except:
split_portfolio = portfolio_dataframe
split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
split_portfolio['SG'].map(player_salary_dict),
split_portfolio['SF'].map(player_salary_dict),
split_portfolio['PF'].map(player_salary_dict),
split_portfolio['C'].map(player_salary_dict),
split_portfolio['G'].map(player_salary_dict),
split_portfolio['F'].map(player_salary_dict),
split_portfolio['UTIL'].map(player_salary_dict)])
split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
split_portfolio['SG'].map(player_proj_dict),
split_portfolio['SF'].map(player_proj_dict),
split_portfolio['PF'].map(player_proj_dict),
split_portfolio['C'].map(player_proj_dict),
split_portfolio['G'].map(player_proj_dict),
split_portfolio['F'].map(player_proj_dict),
split_portfolio['UTIL'].map(player_proj_dict)])
split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
split_portfolio['SG'].map(player_own_dict),
split_portfolio['SF'].map(player_own_dict),
split_portfolio['PF'].map(player_own_dict),
split_portfolio['C'].map(player_own_dict),
split_portfolio['G'].map(player_own_dict),
split_portfolio['F'].map(player_own_dict),
split_portfolio['UTIL'].map(player_own_dict)])
display_portfolio = split_portfolio[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'Salary', 'Projection', 'Ownership']]
st.session_state.display_portfolio = display_portfolio
hold_portfolio = display_portfolio.sort_values(by='Projection', ascending=False)
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.display_portfolio.iloc[:,0:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'] / len(st.session_state.display_portfolio)
st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
gc.collect()
with tab2:
with st.container():
hold_container = st.empty()
col1, col2, col3 = st.columns([3, 3, 3])
with col1:
if st.button("Load/Reset Data", key='reset1'):
for key in st.session_state.keys():
del st.session_state[key]
display_portfolio = hold_portfolio
st.session_state.display_portfolio = display_portfolio
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.display_portfolio.iloc[:,0:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
with col2:
if st.button("Trim Lineups", key='trim1'):
max_proj = 10000
max_own = display_portfolio['Ownership'].iloc[0]
x = 0
for index, row in display_portfolio.iterrows():
if row['Ownership'] > max_own:
display_portfolio.drop(index, inplace=True)
elif row['Ownership'] <= max_own:
max_own = row['Ownership']
st.session_state.display_portfolio = display_portfolio
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.display_portfolio.iloc[:,0:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'] / len(st.session_state.display_portfolio)
st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
with col3:
player_check = st.selectbox('Select player to create comps', options = proj_dataframe['Player'].unique(), key='dk_player')
if st.button('Simulate appropriate pivots'):
with hold_container:
working_roo = proj_dataframe
working_roo.rename(columns={"Minutes Proj": "Minutes_Proj"}, inplace = True)
own_dict = dict(zip(working_roo.Player, working_roo.Own))
min_dict = dict(zip(working_roo.Player, working_roo.Minutes_Proj))
team_dict = dict(zip(working_roo.Player, working_roo.Team))
total_sims = 1000
player_var = working_roo.loc[working_roo['Player'] == player_check]
player_var = player_var.reset_index()
working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - 300) & (working_roo['Salary'] <= player_var['Salary'][0] + 300)]
working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - 3) & (working_roo['Median'] <= player_var['Median'][0] + 3)]
flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes_Proj']]
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes_Proj'] * .25)
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes_Proj'] * .25)
flex_file['STD'] = (flex_file['Median']/4)
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file.astype('int').dtypes
salary_file = salary_file.div(1000)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
players_only.astype('int').dtypes
salary_2x_check = (overall_file - (salary_file*4))
salary_3x_check = (overall_file - (salary_file*5))
salary_4x_check = (overall_file - (salary_file*6))
gpp_check = (overall_file - ((salary_file*5)+10))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['5x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
final_Proj['Own'] = final_Proj['Own'].astype('float')
final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True)
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100
final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']
final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%', 'Own', 'LevX', 'ValX']]
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
final_Proj['Player_swap'] = player_check
st.session_state.final_Proj = final_Proj
hold_container = st.empty()
with st.container():
col1, col2 = st.columns([7, 2])
with col1:
if 'display_portfolio' in st.session_state:
st.dataframe(st.session_state.display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
# with display_container:
# display_container = st.empty()
# if 'final_Proj' in st.session_state:
# st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with col2:
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|