File size: 30,264 Bytes
5691552
 
 
 
 
 
 
 
 
 
 
 
 
 
3e64338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7fcd9
3e64338
 
 
 
 
 
 
 
5691552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b0af72
5691552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b0af72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5691552
19c0bf6
e25c986
47b398e
19c0bf6
e25c986
2642564
e25c986
a6ed169
79d8460
a6ed169
e25c986
5691552
 
91c7844
6a41823
06ac978
de04fae
6a41823
 
 
 
 
 
b0d960b
e22e87f
6a41823
a9809a1
af14b41
a9809a1
6a41823
 
 
 
 
 
 
 
 
 
 
0011081
f240735
 
 
af14b41
f240735
6a41823
13c63bc
 
2364c0b
 
9a3fd1a
2364c0b
6a41823
 
 
 
9a3fd1a
6a41823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19c0bf6
6a41823
de04fae
 
bdc2f5b
de04fae
 
a389160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead5547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47b398e
ead5547
 
 
 
 
af14b41
ead5547
 
 
de04fae
6a41823
2364c0b
 
 
f240735
6a41823
0b0af72
 
3e64338
 
 
 
 
 
6a41823
0b0af72
3e64338
9a3fd1a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import numpy as np
import pandas as pd
import streamlit as st
import gspread
import random
import gc

def init_conn():
          scope = ['https://www.googleapis.com/auth/spreadsheets',
                    "https://www.googleapis.com/auth/drive"]
          
          credentials = {
            "type": "service_account",
            "project_id": "sheets-api-connect-378620",
            "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
            "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
            "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
            "client_id": "106625872877651920064",
            "auth_uri": "https://accounts.google.com/o/oauth2/auth",
            "token_uri": "https://oauth2.googleapis.com/token",
            "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
            "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
          }

          gc = gspread.service_account_from_dict(credentials)
          return gc

gspreadcon = init_conn()

dk_player_url = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
solver_conn = 'https://docs.google.com/spreadsheets/d/1H7kdaxVF7Bv3kb1DSa_3Dq6OaC9ajq9UAQfVyDluXzk/edit#gid=0'

@st.cache_resource(ttl = 600)
def init_baslines():
    sh = gspreadcon.open_by_url(dk_player_url)
    worksheet = sh.worksheet('DK_Salaries')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"name": "Player"}, inplace = True)
    raw_display['player_id_name'] = raw_display['Player'] + " (" + raw_display['player_id'].astype(str) + ")"
    dk_ids = dict(zip(raw_display.Player, raw_display.player_id_name))
    
    return dk_ids

dk_ids = init_baslines()

freq_format = {'Proj Own': '{:.2%}', 'Freq': '{:.2%}'}

tab1, tab2 = st.tabs(['Uploads', 'Manage Portfolio'])

with tab1:
    with st.container():          
          col1, col2 = st.columns([3, 3])
          
          with col1:
                    st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'. Upload your projections first to avoid an error message.")
                    proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')

                    if proj_file is not None:
                              try:
                                        proj_dataframe = pd.read_csv(proj_file)
                                        proj_dataframe = proj_dataframe.dropna(subset='Median')
                                        proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
                                        try:
                                            proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
                                        except:
                                            pass
                                        
                              except:
                                        proj_dataframe = pd.read_excel(proj_file)
                                        proj_dataframe = proj_dataframe.dropna(subset='Median')
                                        proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
                                        try:
                                            proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
                                        except:
                                            pass
                                
                              st.table(proj_dataframe.head(10))
                              player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
                              player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
                              player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
                              
          with col2:
                    st.info("The Portfolio file must contain only columns in order and explicitly named: 'PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', and 'UTIL'. Upload your projections first to avoid an error message.")
                    portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')

                    if portfolio_file is not None:
                            try:
                                      portfolio_dataframe = pd.read_csv(portfolio_file)
                                      
                            except:
                                      portfolio_dataframe = pd.read_excel(portfolio_file)
                              
                            portfolio_dataframe.columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
                            split_portfolio = portfolio_dataframe
                            split_portfolio[['PG', 'PG_ID']] = split_portfolio.PG.str.split("(", n=1, expand = True)
                            split_portfolio[['SG', 'SG_ID']] = split_portfolio.SG.str.split("(", n=1, expand = True)
                            split_portfolio[['SF', 'SF_ID']] = split_portfolio.SF.str.split("(", n=1, expand = True)
                            split_portfolio[['PF', 'PF_ID']] = split_portfolio.PF.str.split("(", n=1, expand = True)
                            split_portfolio[['C', 'C_ID']] = split_portfolio.C.str.split("(", n=1, expand = True)
                            split_portfolio[['G', 'G_ID']] = split_portfolio.G.str.split("(", n=1, expand = True)
                            split_portfolio[['F', 'F_ID']] = split_portfolio.F.str.split("(", n=1, expand = True)
                            split_portfolio[['UTIL', 'UTIL_ID']] = split_portfolio.UTIL.str.split("(", n=1, expand = True)
  
                            split_portfolio['PG'] = split_portfolio['PG'].str.strip()
                            split_portfolio['SG'] = split_portfolio['SG'].str.strip()
                            split_portfolio['SF'] = split_portfolio['SF'].str.strip()
                            split_portfolio['PF'] = split_portfolio['PF'].str.strip()
                            split_portfolio['C'] = split_portfolio['C'].str.strip()
                            split_portfolio['G'] = split_portfolio['G'].str.strip()
                            split_portfolio['F'] = split_portfolio['F'].str.strip()
                            split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
                            
                            split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
                                      split_portfolio['SG'].map(player_salary_dict),
                                      split_portfolio['SF'].map(player_salary_dict),
                                      split_portfolio['PF'].map(player_salary_dict),
                                      split_portfolio['C'].map(player_salary_dict),
                                      split_portfolio['G'].map(player_salary_dict),
                                      split_portfolio['F'].map(player_salary_dict),
                                      split_portfolio['UTIL'].map(player_salary_dict)])
                            
                            split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
                                      split_portfolio['SG'].map(player_proj_dict),
                                      split_portfolio['SF'].map(player_proj_dict),
                                      split_portfolio['PF'].map(player_proj_dict),
                                      split_portfolio['C'].map(player_proj_dict),
                                      split_portfolio['G'].map(player_proj_dict),
                                      split_portfolio['F'].map(player_proj_dict),
                                      split_portfolio['UTIL'].map(player_proj_dict)])
                            
                            split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
                                      split_portfolio['SG'].map(player_own_dict),
                                      split_portfolio['SF'].map(player_own_dict),
                                      split_portfolio['PF'].map(player_own_dict),
                                      split_portfolio['C'].map(player_own_dict),
                                      split_portfolio['G'].map(player_own_dict),
                                      split_portfolio['F'].map(player_own_dict),
                                      split_portfolio['UTIL'].map(player_own_dict)])
                            
                            st.table(split_portfolio.head(10))
                            
                            split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
                                      split_portfolio['SG'].map(player_salary_dict),
                                      split_portfolio['SF'].map(player_salary_dict),
                                      split_portfolio['PF'].map(player_salary_dict),
                                      split_portfolio['C'].map(player_salary_dict),
                                      split_portfolio['G'].map(player_salary_dict),
                                      split_portfolio['F'].map(player_salary_dict),
                                      split_portfolio['UTIL'].map(player_salary_dict)])
                            
                            split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
                                      split_portfolio['SG'].map(player_proj_dict),
                                      split_portfolio['SF'].map(player_proj_dict),
                                      split_portfolio['PF'].map(player_proj_dict),
                                      split_portfolio['C'].map(player_proj_dict),
                                      split_portfolio['G'].map(player_proj_dict),
                                      split_portfolio['F'].map(player_proj_dict),
                                      split_portfolio['UTIL'].map(player_proj_dict)])
                                                            
                            
                            split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
                                      split_portfolio['SG'].map(player_own_dict),
                                      split_portfolio['SF'].map(player_own_dict),
                                      split_portfolio['PF'].map(player_own_dict),
                                      split_portfolio['C'].map(player_own_dict),
                                      split_portfolio['G'].map(player_own_dict),
                                      split_portfolio['F'].map(player_own_dict),
                                      split_portfolio['UTIL'].map(player_own_dict)])
                                 
                            display_portfolio = split_portfolio[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'Salary', 'Projection', 'Ownership']]
                            st.session_state.display_portfolio = display_portfolio
                            st.session_state.export_portfolio = st.session_state.display_portfolio.replace(dk_ids)
                            hold_portfolio = display_portfolio.sort_values(by='Projection', ascending=False)
                            
                            st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.display_portfolio.iloc[:,0:8].values, return_counts=True)),
                                                        columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
                            st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'] / len(st.session_state.display_portfolio)
                            st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(player_own_dict) / 100
                            st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
                            
                            gc.collect() 
                            
with tab2:
    with st.container():
        hold_container = st.empty()
        col1, col2, col3, col4, col5, col6 = st.columns([2, 2, 2, 2, 2, 2])
        with col1:
            if st.button("Load/Reset Data", key='reset1'):
                for key in st.session_state.keys():
                      del st.session_state[key]
                display_portfolio = hold_portfolio
                st.session_state.display_portfolio = display_portfolio
                st.session_state.export_portfolio = st.session_state.display_portfolio.replace(dk_ids)
                st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.display_portfolio.iloc[:,0:8].values, return_counts=True)),
                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
                st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'] / len(st.session_state.display_portfolio)
                st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(player_own_dict) / 100
                st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
        with col2:
            if st.button("Trim Lineups", key='trim1'):
                max_proj = 10000
                max_own = display_portfolio['Ownership'].iloc[0]
                x = 0
                for index, row in display_portfolio.iterrows():
                    if row['Ownership'] > max_own:
                        display_portfolio.drop(index, inplace=True)
                    elif row['Ownership'] <= max_own:
                        max_own = row['Ownership']
                st.session_state.display_portfolio = display_portfolio
                st.session_state.export_portfolio = st.session_state.display_portfolio.replace(dk_ids)
                st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.display_portfolio.iloc[:,0:8].values, return_counts=True)),
                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
                st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'] / len(st.session_state.display_portfolio)
                st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(player_own_dict) / 100
                st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
        with col3:
            if proj_file is not None:
                player_check = st.selectbox('Select player to create comps', options = proj_dataframe['Player'].unique(), key='dk_player')
        with col4:
            if proj_file is not None:
                pos_var_list = st.multiselect('Which positions would you like to include?', options = ['PG', 'SG', 'SF', 'PF', 'C'], key='pos_var_list')
        with col5:
            if st.button('Simulate appropriate pivots'):
                with hold_container:
                    
                    working_roo = proj_dataframe
                    working_roo = working_roo[working_roo['Position'].str.contains('|'.join(pos_var_list))]
                    working_roo.rename(columns={"Minutes Proj": "Minutes_Proj"}, inplace = True)
                    own_dict = dict(zip(working_roo.Player, working_roo.Own))
                    min_dict = dict(zip(working_roo.Player, working_roo.Minutes_Proj))
                    team_dict = dict(zip(working_roo.Player, working_roo.Team))
                    total_sims = 1000
                    
                    player_var = working_roo.loc[working_roo['Player'] == player_check]
                    player_var = player_var.reset_index()
                    
                    working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - 300) & (working_roo['Salary'] <= player_var['Salary'][0] + 300)]
                    working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - 3) & (working_roo['Median'] <= player_var['Median'][0] + 3)]
                    
                    flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes_Proj']]
                    flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes_Proj'] * .25)
                    flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes_Proj'] * .25)
                    flex_file['STD'] = (flex_file['Median']/4)
                    flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
                    hold_file = flex_file
                    overall_file = flex_file
                    salary_file = flex_file
      
                    overall_players = overall_file[['Player']]
      
                    for x in range(0,total_sims):    
                        salary_file[x] = salary_file['Salary']
      
                    salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                    salary_file.astype('int').dtypes
      
                    salary_file = salary_file.div(1000)
      
                    for x in range(0,total_sims):    
                        overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
      
                    overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                    overall_file.astype('int').dtypes
      
                    players_only = hold_file[['Player']]
                    raw_lineups_file = players_only
      
                    for x in range(0,total_sims):
                        maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
                        raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
                        players_only[x] = raw_lineups_file[x].rank(ascending=False)
      
                    players_only=players_only.drop(['Player'], axis=1)
                    players_only.astype('int').dtypes
    
                    salary_2x_check = (overall_file - (salary_file*4))
                    salary_3x_check = (overall_file - (salary_file*5))
                    salary_4x_check = (overall_file - (salary_file*6))
                    gpp_check = (overall_file - ((salary_file*5)+10))
    
                    players_only['Average_Rank'] = players_only.mean(axis=1)
                    players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
                    players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
                    players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
                    players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
                    players_only['3x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
                    players_only['4x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
                    players_only['5x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
                    players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
    
                    players_only['Player'] = hold_file[['Player']]
    
                    final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
      
                    final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
                    final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
    
                    final_Proj['Own'] = final_Proj['Player'].map(own_dict)
                    final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
                    final_Proj['Team'] = final_Proj['Player'].map(team_dict)
                    final_Proj['Own'] = final_Proj['Own'].astype('float')
                    final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True)
                    final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
                    final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100
                    final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']
                    final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
                    final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
    
                    final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%', 'Own', 'LevX', 'ValX']]
                    final_Proj = final_Proj.sort_values(by='Median', ascending=False)
                    final_Proj['Player_swap'] = player_check
                    st.session_state.final_Proj = final_Proj
                    
                    hold_container = st.empty()
        with col6:
            if 'final_Proj' in st.session_state:
                player_swap = st.selectbox('Select player to swap to:', options = st.session_state.final_Proj['Player'].unique(), key='dk_swap')
                if st.button('Make swaps'):
                    with hold_container:
                        if pos_var_list == "PG":
                            st.session_state.display_portfolio['PG'].replace(player_check, player_swap, inplace=True)
                            st.session_state.display_portfolio['G'].replace(player_check, player_swap, inplace=True)
                            st.session_state.display_portfolio['UTIL'].replace(player_check, player_swap, inplace=True)
                        elif pos_var_list == "SG":
                            st.session_state.display_portfolio['SG'].replace(player_check, player_swap, inplace=True)
                            st.session_state.display_portfolio['G'].replace(player_check, player_swap, inplace=True)
                            st.session_state.display_portfolio['UTIL'].replace(player_check, player_swap, inplace=True)
                        elif pos_var_list == "SF":
                            st.session_state.display_portfolio['SF'].replace(player_check, player_swap, inplace=True)
                            st.session_state.display_portfolio['F'].replace(player_check, player_swap, inplace=True)
                            st.session_state.display_portfolio['UTIL'].replace(player_check, player_swap, inplace=True)
                        elif pos_var_list == "PF":
                            st.session_state.display_portfolio['PF'].replace(player_check, player_swap, inplace=True)
                            st.session_state.display_portfolio['F'].replace(player_check, player_swap, inplace=True)
                            st.session_state.display_portfolio['UTIL'].replace(player_check, player_swap, inplace=True)
                        elif pos_var_list == "C":
                            st.session_state.display_portfolio['C'].replace(player_check, player_swap, inplace=True)
                            st.session_state.display_portfolio['UTIL'].replace(player_check, player_swap, inplace=True)
                        split_portfolio = st.session_state.display_portfolio
                        
                        split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
                                  split_portfolio['SG'].map(player_salary_dict),
                                  split_portfolio['SF'].map(player_salary_dict),
                                  split_portfolio['PF'].map(player_salary_dict),
                                  split_portfolio['C'].map(player_salary_dict),
                                  split_portfolio['G'].map(player_salary_dict),
                                  split_portfolio['F'].map(player_salary_dict),
                                  split_portfolio['UTIL'].map(player_salary_dict)])
                        
                        split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
                                  split_portfolio['SG'].map(player_proj_dict),
                                  split_portfolio['SF'].map(player_proj_dict),
                                  split_portfolio['PF'].map(player_proj_dict),
                                  split_portfolio['C'].map(player_proj_dict),
                                  split_portfolio['G'].map(player_proj_dict),
                                  split_portfolio['F'].map(player_proj_dict),
                                  split_portfolio['UTIL'].map(player_proj_dict)])
                        
                        split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
                                  split_portfolio['SG'].map(player_own_dict),
                                  split_portfolio['SF'].map(player_own_dict),
                                  split_portfolio['PF'].map(player_own_dict),
                                  split_portfolio['C'].map(player_own_dict),
                                  split_portfolio['G'].map(player_own_dict),
                                  split_portfolio['F'].map(player_own_dict),
                                  split_portfolio['UTIL'].map(player_own_dict)])
                             
                        st.session_state.display_portfolio = split_portfolio[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'Salary', 'Projection', 'Ownership']]
                        st.session_state.export_portfolio = st.session_state.display_portfolio.replace(dk_ids)
                        hold_portfolio = display_portfolio.sort_values(by='Projection', ascending=False)
                        
                        st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.display_portfolio.iloc[:,0:8].values, return_counts=True)),
                                                    columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
                        st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'] / len(st.session_state.display_portfolio)
                        st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(player_own_dict) / 100
                        st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
                        
                        gc.collect()
                
    with st.container():
        if 'final_Proj' in st.session_state:
            st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
        
        col1, col2 = st.columns([7, 2])         
        with col1:
            if 'display_portfolio' in st.session_state:
                st.dataframe(st.session_state.display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
                st.download_button(
                    label="Export Full Frame",
                    data=st.session_state.export_portfolio.to_csv().encode('utf-8'),
                    file_name='portfolio_export.csv',
                    mime='text/csv',
                )
        with col2:
            if 'player_freq' in st.session_state:
                st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)