James McCool
Fix variable naming in simulation initialization for DraftKings and FanDuel
38baa2d
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import gspread
import pymongo
import time
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
return client
client = init_conn()
percentages_format = {'Exposure': '{:.2%}'}
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
dk_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #FFD700;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #DAA520;
cursor: pointer;
}
</style>""", unsafe_allow_html=True)
@st.cache_data(ttl = 599)
def init_DK_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"DK_{sport}_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 599)
def init_DK_secondary_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"DK_{sport}_Secondary_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_second_seed = raw_display.to_numpy()
return DK_second_seed
@st.cache_data(ttl = 599)
def init_DK_auxiliary_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"DK_{sport}_Auxiliary_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_auxiliary_seed = raw_display.to_numpy()
return DK_auxiliary_seed
@st.cache_data(ttl = 599)
def init_FD_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"FD_{sport}_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data(ttl = 599)
def init_FD_secondary_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"FD_{sport}_Secondary_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
FD_second_seed = raw_display.to_numpy()
return FD_second_seed
@st.cache_data(ttl = 599)
def init_FD_auxiliary_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"FD_{sport}_Auxiliary_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
FD_auxiliary_seed = raw_display.to_numpy()
return FD_auxiliary_seed
@st.cache_data(ttl = 599)
def init_baselines(sport):
if sport == 'NFL':
db = client["NFL_Database"]
collection = db['DK_SD_NFL_ROO']
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
raw_display['Small_Field_Own'] = raw_display['Large_Field_Own']
raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100)
small_cpt_own_var = 300 / raw_display['small_CPT_Own_raw'].sum()
raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var
raw_display['cpt_Median'] = raw_display['Median'] * 1.25
raw_display['STDev'] = raw_display['Median'] / 4
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
dk_raw = raw_display.dropna(subset=['Median'])
collection = db['FD_SD_NFL_ROO']
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
raw_display['Small_Field_Own'] = raw_display['Large_Field_Own']
raw_display['small_CPT_Own'] = raw_display['CPT_Own']
raw_display['cpt_Median'] = raw_display['Median']
raw_display['STDev'] = raw_display['Median'] / 4
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
fd_raw = raw_display.dropna(subset=['Median'])
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db['Player_SD_Range_Of_Outcomes']
cursor = collection.find()
load_display = pd.DataFrame(list(cursor))
load_display = load_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
raw_display = load_display[load_display['site'] == 'Draftkings']
raw_display['Small_Field_Own'] = raw_display['Small_Own']
raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100)
small_cpt_own_var = 300 / raw_display['small_CPT_Own_raw'].sum()
raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var
raw_display['cpt_Median'] = raw_display['Median'] * 1.25
raw_display['STDev'] = raw_display['Median'] / 4
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
dk_raw = raw_display.dropna(subset=['Median'])
raw_display = load_display[load_display['site'] == 'Fanduel']
raw_display['Small_Field_Own'] = raw_display['Large_Own']
raw_display['small_CPT_Own'] = raw_display['CPT_Own']
raw_display['cpt_Median'] = raw_display['Median']
raw_display['STDev'] = raw_display['Median'] / 4
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
fd_raw = raw_display.dropna(subset=['Median'])
return dk_raw, fd_raw
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
@st.cache_data
def calculate_DK_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :6], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def calculate_FD_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :5], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size):
SimVar = 1
Sim_Winners = []
# Pre-vectorize functions
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
vec_cpt_projection_map = np.vectorize(maps_dict['cpt_projection_map'].__getitem__)
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
vec_cpt_stdev_map = np.vectorize(maps_dict['cpt_STDev_map'].__getitem__)
st.write('Simulating contest on frames')
while SimVar <= Sim_size:
fp_random = seed_frame[np.random.choice(seed_frame.shape[0], Contest_Size)]
sample_arrays1 = np.c_[
fp_random,
np.sum(np.random.normal(
loc=np.concatenate([
vec_cpt_projection_map(fp_random[:, 0:1]), # Apply cpt_projection_map to first column
vec_projection_map(fp_random[:, 1:-7]) # Apply original projection to remaining columns
], axis=1),
scale=np.concatenate([
vec_cpt_stdev_map(fp_random[:, 0:1]), # Apply cpt_projection_map to first column
vec_stdev_map(fp_random[:, 1:-7]) # Apply original projection to remaining columns
], axis=1)),
axis=1)
]
sample_arrays = sample_arrays1
final_array = sample_arrays[sample_arrays[:, 7].argsort()[::-1]]
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
Sim_Winners.append(best_lineup)
SimVar += 1
return Sim_Winners
try:
dk_raw, fd_raw = init_baselines('NFL')
except:
dk_raw, fd_raw = init_baselines('NBA')
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
with tab1:
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
dk_raw, fd_raw = init_baselines('NFL')
sim_sport_var1 = st.radio("What sport are you working with?", ('NBA', 'NFL'), key='sim_sport_var1')
dk_raw, fd_raw = init_baselines(sim_sport_var1)
sim_slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='sim_slate_var1')
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
if sim_site_var1 == 'Draftkings':
raw_baselines = dk_raw
column_names = dk_columns
elif sim_site_var1 == 'Fanduel':
raw_baselines = fd_raw
column_names = fd_columns
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
if contest_var1 == 'Small':
Contest_Size = 1000
st.write("Small field size is 1,000 entrants.")
raw_baselines['Own'] = raw_baselines['Small_Field_Own']
raw_baselines['CPT_Own'] = raw_baselines['small_CPT_Own']
elif contest_var1 == 'Medium':
Contest_Size = 5000
st.write("Medium field size is 5,000 entrants.")
elif contest_var1 == 'Large':
Contest_Size = 10000
st.write("Large field size is 10,000 entrants.")
elif contest_var1 == 'Custom':
Contest_Size = st.number_input("Insert contest size", value=100, min_value=1, max_value=100000)
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
if strength_var1 == 'Not Very':
sharp_split = 500000
elif strength_var1 == 'Below Average':
sharp_split = 400000
elif strength_var1 == 'Average':
sharp_split = 300000
elif strength_var1 == 'Above Average':
sharp_split = 200000
elif strength_var1 == 'Very':
sharp_split = 100000
if st.button("Run Contest Sim"):
if 'working_seed' in st.session_state:
maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, Contest_Size)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
else:
if sim_site_var1 == 'Draftkings':
if sim_slate_var1 == 'Showdown':
st.session_state.working_seed = init_DK_seed_frames(sim_sport_var1, sharp_split)
if sim_sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sim_sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sim_slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_DK_secondary_seed_frames(sim_sport_var1, sharp_split)
if sim_sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sim_sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sim_slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sim_sport_var1, sharp_split)
if sim_sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sim_sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
raw_baselines = dk_raw
column_names = dk_columns
elif sim_site_var1 == 'Fanduel':
if sim_slate_var1 == 'Showdown':
st.session_state.working_seed = init_FD_seed_frames(sim_sport_var1, sharp_split)
if sim_sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sim_sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sim_slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_FD_secondary_seed_frames(sim_sport_var1, sharp_split)
if sim_sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sim_sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sim_slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sim_sport_var1, sharp_split)
if sim_sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sim_sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
raw_baselines = fd_raw
column_names = fd_columns
maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, Contest_Size)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
# Add percent rank columns for ownership at each roster position
# Calculate Dupes column for Fanduel
if sim_site_var1 == 'Fanduel':
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank']
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own']
calc_columns = ['own_product', 'avg_own_rank', 'dupes_calc']
Sim_Winner_Frame['CPT_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX1_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX2_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX3_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX4_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['CPT_Own'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']) / 100
Sim_Winner_Frame['FLEX1_Own'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX2_Own'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX3_Own'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX4_Own'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']) / 100
# Calculate ownership product and convert to probability
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1)) + 0.0001
# Calculate average of ownership percent rank columns
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
# Calculate dupes formula
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * (Contest_Size * 1.5)) + ((Sim_Winner_Frame['salary'] - 59800) / 100)
# Round and handle negative values
Sim_Winner_Frame['Dupes'] = np.where(
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
0,
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
)
Sim_Winner_Frame['Dupes'] = (Sim_Winner_Frame['Dupes'] * (500000 / sharp_split)) / 2
elif sim_site_var1 == 'Draftkings':
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
calc_columns = ['own_product', 'avg_own_rank', 'dupes_calc']
Sim_Winner_Frame['CPT_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX1_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX2_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX3_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX4_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX5_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['CPT_Own'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']) / 100
Sim_Winner_Frame['FLEX1_Own'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX2_Own'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX3_Own'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX4_Own'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX5_Own'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']) / 100
# Calculate ownership product and convert to probability
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1))
# Calculate average of ownership percent rank columns
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
# Calculate dupes formula
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * (Contest_Size * 1.5)) + ((Sim_Winner_Frame['salary'] - 49800) / 100)
# Round and handle negative values
Sim_Winner_Frame['Dupes'] = np.where(
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
0,
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
)
Sim_Winner_Frame['Dupes'] = (Sim_Winner_Frame['Dupes'] * (500000 / sharp_split)) / 2
Sim_Winner_Frame['Dupes'] = np.round(Sim_Winner_Frame['Dupes'], 0)
Sim_Winner_Frame['Dupes'] = np.where(
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
0,
np.round(Sim_Winner_Frame['dupes_calc'], 0)
)
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=dup_count_columns)
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=own_columns)
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=calc_columns)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32, 'Dupes': int}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
st.session_state.Sim_Winner_Export.iloc[:, 0:6] = st.session_state.Sim_Winner_Export.iloc[:, 0:6].apply(lambda x: x.map(export_id_dict))
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
freq_copy = st.session_state.Sim_Winner_Display
if sim_site_var1 == 'Draftkings':
freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:5].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
freq_working['Freq'] = freq_working['Freq'].astype(int)
freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
if sim_site_var1 == 'Draftkings':
if sim_sport_var1 == 'NFL':
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map']) / 1.5
elif sim_sport_var1 == 'NBA':
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
elif sim_site_var1 == 'Fanduel':
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
freq_working['Exposure'] = freq_working['Freq']/(1000)
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
freq_working['Team'] = freq_working['Player'].map(maps_dict['Team_map'])
st.session_state.player_freq = freq_working.copy()
if sim_site_var1 == 'Draftkings':
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
cpt_working['Freq'] = cpt_working['Freq'].astype(int)
cpt_working['Position'] = cpt_working['Player'].map(maps_dict['Pos_map'])
if sim_sport_var1 == 'NFL':
cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map'])
elif sim_sport_var1 == 'NBA':
cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map']) * 1.5
cpt_working['Proj Own'] = cpt_working['Player'].map(maps_dict['cpt_Own_map']) / 100
cpt_working['Exposure'] = cpt_working['Freq']/(1000)
cpt_working['Edge'] = cpt_working['Exposure'] - cpt_working['Proj Own']
cpt_working['Team'] = cpt_working['Player'].map(maps_dict['Team_map'])
st.session_state.sp_freq = cpt_working.copy()
if sim_site_var1 == 'Draftkings':
flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
cpt_own_div = 600
elif sim_site_var1 == 'Fanduel':
flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:5].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
cpt_own_div = 500
flex_working['Freq'] = flex_working['Freq'].astype(int)
flex_working['Position'] = flex_working['Player'].map(maps_dict['Pos_map'])
if sim_site_var1 == 'Draftkings':
if sim_sport_var1 == 'NFL':
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map']) / 1.5
elif sim_sport_var1 == 'NBA':
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
elif sim_site_var1 == 'Fanduel':
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
flex_working['Proj Own'] = (flex_working['Player'].map(maps_dict['Own_map']) / 100) - (flex_working['Player'].map(maps_dict['cpt_Own_map']) / 100)
flex_working['Exposure'] = flex_working['Freq']/(1000)
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
st.session_state.flex_freq = flex_working.copy()
if sim_site_var1 == 'Draftkings':
team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,8:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,7:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
team_working['Freq'] = team_working['Freq'].astype(int)
team_working['Exposure'] = team_working['Freq']/(1000)
st.session_state.team_freq = team_working.copy()
with st.container():
if st.button("Reset Sim", key='reset_sim'):
for key in st.session_state.keys():
del st.session_state[key]
if 'player_freq' in st.session_state:
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
if player_split_var2 == 'Specific Players':
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
elif player_split_var2 == 'Full Players':
find_var2 = st.session_state.player_freq.Player.values.tolist()
if player_split_var2 == 'Specific Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
if player_split_var2 == 'Full Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
if 'Sim_Winner_Display' in st.session_state:
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
if 'Sim_Winner_Export' in st.session_state:
st.download_button(
label="Export Full Frame",
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
file_name='NFL_SD_consim_export.csv',
mime='text/csv',
)
with st.container():
tab1, tab2, tab3, tab4 = st.tabs(['Overall Exposures', 'CPT Exposures', 'FLEX Exposures', 'Team Exposures'])
with tab1:
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.player_freq.to_csv().encode('utf-8'),
file_name='player_freq_export.csv',
mime='text/csv',
key='overall'
)
with tab2:
if 'sp_freq' in st.session_state:
st.dataframe(st.session_state.sp_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.sp_freq.to_csv().encode('utf-8'),
file_name='cpt_freq.csv',
mime='text/csv',
key='sp'
)
with tab3:
if 'flex_freq' in st.session_state:
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.flex_freq.to_csv().encode('utf-8'),
file_name='flex_freq.csv',
mime='text/csv',
key='flex'
)
with tab4:
if 'team_freq' in st.session_state:
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.team_freq.to_csv().encode('utf-8'),
file_name='team_freq.csv',
mime='text/csv',
key='team'
)
with tab2:
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
dk_raw, fd_raw = init_baselines('NFL')
sport_var1 = st.radio("What sport are you working with?", ('NBA', 'NFL'), key='sport_var1')
slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='slate_var1')
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
if site_var1 == 'Draftkings':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = dk_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
elif site_var1 == 'Fanduel':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = fd_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [4, 3, 2, 1, 0]
if st.button("Prepare data export", key='data_export'):
if 'working_seed' in st.session_state:
data_export = st.session_state.working_seed.copy()
elif 'working_seed' not in st.session_state:
if site_var1 == 'Draftkings':
if slate_var1 == 'Showdown':
st.session_state.working_seed = init_DK_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_DK_secondary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
raw_baselines = dk_raw
column_names = dk_columns
elif site_var1 == 'Fanduel':
if slate_var1 == 'Showdown':
st.session_state.working_seed = init_FD_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_FD_secondary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
raw_baselines = fd_raw
column_names = fd_columns
data_export = st.session_state.working_seed.copy()
for col in range(6):
data_export[:, col] = np.array([export_id_dict.get(x, x) for x in data_export[:, col]])
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='NFL_SD_optimals_export.csv',
mime='text/csv',
)
if st.button("Load Data", key='load_data'):
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Showdown':
st.session_state.working_seed = init_DK_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_DK_secondary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Showdown':
st.session_state.working_seed = init_FD_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_FD_secondary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
with st.container():
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)