Multichem commited on
Commit
f0414d7
·
verified ·
1 Parent(s): ade1ed4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +589 -0
app.py ADDED
@@ -0,0 +1,589 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ st.set_page_config(layout="wide")
3
+ import numpy as np
4
+ import pandas as pd
5
+ import gspread
6
+ import pymongo
7
+ import time
8
+
9
+ @st.cache_resource
10
+ def init_conn():
11
+ scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
12
+
13
+ credentials = {
14
+ "type": "service_account",
15
+ "project_id": "model-sheets-connect",
16
+ "private_key_id": st.secrets['model_sheets_connect_pk'],
17
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
18
+ "client_email": "[email protected]",
19
+ "client_id": "100369174533302798535",
20
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
21
+ "token_uri": "https://oauth2.googleapis.com/token",
22
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
23
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
24
+ }
25
+
26
+ credentials2 = {
27
+ "type": "service_account",
28
+ "project_id": "sheets-api-connect-378620",
29
+ "private_key_id": st.secrets['sheets_api_connect_pk'],
30
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
31
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
32
+ "client_id": "106625872877651920064",
33
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
34
+ "token_uri": "https://oauth2.googleapis.com/token",
35
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
36
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
37
+ }
38
+
39
+ uri = st.secrets['mongo_uri']
40
+ client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
41
+
42
+ NFL_Data = st.secrets['NFL_Data']
43
+
44
+ NBA_Data = st.secrets['NBA_Data']
45
+
46
+ gc = gspread.service_account_from_dict(credentials)
47
+ gc2 = gspread.service_account_from_dict(credentials2)
48
+
49
+ return gc, gc2, client, NFL_Data, NBA_Data
50
+
51
+ gcservice_account, gcservice_account2, client, NFL_Data, NBA_Data = init_conn()
52
+
53
+ percentages_format = {'Exposure': '{:.2%}'}
54
+ freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
55
+ dk_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
56
+ fd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
57
+
58
+ @st.cache_data(ttl = 599)
59
+ def init_DK_seed_frames(sport):
60
+ if sport == 'NFL':
61
+ db = client["testing_db"]
62
+ elif sport == 'NBA':
63
+ db = client["NBA_DFS"]
64
+
65
+ collection = db[f"DK_{sport}_SD_seed_frame"]
66
+ cursor = collection.find()
67
+
68
+ raw_display = pd.DataFrame(list(cursor))
69
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
70
+ DK_seed = raw_display.to_numpy()
71
+
72
+ return DK_seed
73
+
74
+ @st.cache_data(ttl = 599)
75
+ def init_DK_secondary_seed_frames(sport):
76
+
77
+ if sport == 'NFL':
78
+ db = client["testing_db"]
79
+ elif sport == 'NBA':
80
+ db = client["NBA_DFS"]
81
+
82
+ collection = db[f"DK_{sport}_Secondary_SD_seed_frame"]
83
+ cursor = collection.find()
84
+
85
+ raw_display = pd.DataFrame(list(cursor))
86
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
87
+ DK_second_seed = raw_display.to_numpy()
88
+
89
+ return DK_second_seed
90
+
91
+ @st.cache_data(ttl = 599)
92
+ def init_FD_seed_frames(sport):
93
+
94
+ if sport == 'NFL':
95
+ db = client["testing_db"]
96
+ elif sport == 'NBA':
97
+ db = client["NBA_DFS"]
98
+
99
+ collection = db[f"FD_{sport}_SD_seed_frame"]
100
+ cursor = collection.find()
101
+
102
+ raw_display = pd.DataFrame(list(cursor))
103
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
104
+ FD_seed = raw_display.to_numpy()
105
+
106
+ return FD_seed
107
+
108
+ @st.cache_data(ttl = 599)
109
+ def init_FD_secondary_seed_frames(sport):
110
+
111
+ if sport == 'NFL':
112
+ db = client["testing_db"]
113
+ elif sport == 'NBA':
114
+ db = client["NBA_DFS"]
115
+
116
+ collection = db[f"FD_{sport}_Secondary_SD_seed_frame"]
117
+ cursor = collection.find()
118
+
119
+ raw_display = pd.DataFrame(list(cursor))
120
+ raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
121
+ FD_second_seed = raw_display.to_numpy()
122
+
123
+ return FD_second_seed
124
+
125
+ @st.cache_data(ttl = 599)
126
+ def init_baselines(sport):
127
+ if sport == 'NFL':
128
+ try:
129
+ sh = gcservice_account.open_by_url(NFL_Data)
130
+ except:
131
+ sh = gcservice_account2.open_by_url(NFL_Data)
132
+
133
+ worksheet = sh.worksheet('DK_SD_ROO')
134
+ load_display = pd.DataFrame(worksheet.get_all_records())
135
+ load_display.replace('', np.nan, inplace=True)
136
+ load_display['STDev'] = load_display['Median'] / 4
137
+ load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
138
+
139
+ dk_raw = load_display.dropna(subset=['Median'])
140
+
141
+ worksheet = sh.worksheet('FD_SD_ROO')
142
+ load_display = pd.DataFrame(worksheet.get_all_records())
143
+ load_display.replace('', np.nan, inplace=True)
144
+ load_display['STDev'] = load_display['Median'] / 4
145
+ load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
146
+
147
+ fd_raw = load_display.dropna(subset=['Median'])
148
+
149
+ elif sport == 'NBA':
150
+
151
+ try:
152
+ sh = gcservice_account.open_by_url(NBA_Data)
153
+ except:
154
+ sh = gcservice_account2.open_by_url(NBA_Data)
155
+
156
+ worksheet = sh.worksheet('Player_Level_SD_ROO')
157
+ load_display = pd.DataFrame(worksheet.get_all_records())
158
+ load_display.replace('', np.nan, inplace=True)
159
+ load_display['STDev'] = load_display['Median'] / 4
160
+ load_display = load_display[load_display['site'] == 'Draftkings']
161
+ load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
162
+
163
+ dk_raw = load_display.dropna(subset=['Median'])
164
+
165
+ worksheet = sh.worksheet('Player_Level_SD_ROO')
166
+ load_display = pd.DataFrame(worksheet.get_all_records())
167
+ load_display.replace('', np.nan, inplace=True)
168
+ load_display['STDev'] = load_display['Median'] / 4
169
+ load_display = load_display[load_display['site'] == 'Fanduel']
170
+ load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
171
+
172
+ fd_raw = load_display.dropna(subset=['Median'])
173
+
174
+ return dk_raw, fd_raw
175
+
176
+ @st.cache_data
177
+ def convert_df(array):
178
+ array = pd.DataFrame(array, columns=column_names)
179
+ return array.to_csv().encode('utf-8')
180
+
181
+ @st.cache_data
182
+ def calculate_DK_value_frequencies(np_array):
183
+ unique, counts = np.unique(np_array[:, :6], return_counts=True)
184
+ frequencies = counts / len(np_array) # Normalize by the number of rows
185
+ combined_array = np.column_stack((unique, frequencies))
186
+ return combined_array
187
+
188
+ @st.cache_data
189
+ def calculate_FD_value_frequencies(np_array):
190
+ unique, counts = np.unique(np_array[:, :5], return_counts=True)
191
+ frequencies = counts / len(np_array) # Normalize by the number of rows
192
+ combined_array = np.column_stack((unique, frequencies))
193
+ return combined_array
194
+
195
+ @st.cache_data
196
+ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
197
+ SimVar = 1
198
+ Sim_Winners = []
199
+ fp_array = seed_frame[:sharp_split, :]
200
+
201
+ # Pre-vectorize functions
202
+ vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
203
+ vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
204
+
205
+ st.write('Simulating contest on frames')
206
+
207
+ while SimVar <= Sim_size:
208
+ fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
209
+
210
+ sample_arrays1 = np.c_[
211
+ fp_random,
212
+ np.sum(np.random.normal(
213
+ loc=vec_projection_map(fp_random[:, :-7]),
214
+ scale=vec_stdev_map(fp_random[:, :-7])),
215
+ axis=1)
216
+ ]
217
+
218
+ sample_arrays = sample_arrays1
219
+
220
+ final_array = sample_arrays[sample_arrays[:, 7].argsort()[::-1]]
221
+ best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
222
+ Sim_Winners.append(best_lineup)
223
+ SimVar += 1
224
+
225
+ return Sim_Winners
226
+
227
+ tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
228
+ with tab2:
229
+ col1, col2 = st.columns([1, 7])
230
+ with col1:
231
+ if st.button("Load/Reset Data", key='reset1'):
232
+ st.cache_data.clear()
233
+ for key in st.session_state.keys():
234
+ del st.session_state[key]
235
+ dk_raw, fd_raw = init_baselines('NFL')
236
+
237
+ sport_var1 = st.radio("What sport are you working with?", ('NBA', 'NFL'), key='sport_var1')
238
+ dk_raw, fd_raw = init_baselines(sport_var1)
239
+ slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown'), key='slate_var1')
240
+
241
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
242
+ if site_var1 == 'Draftkings':
243
+ if slate_var1 == 'Showdown':
244
+ DK_seed = init_DK_seed_frames(sport_var1)
245
+ elif slate_var1 == 'Secondary Showdown':
246
+ DK_seed = init_DK_secondary_seed_frames(sport_var1)
247
+ raw_baselines = dk_raw
248
+ column_names = dk_columns
249
+
250
+ team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
251
+ if team_var1 == 'Specific Teams':
252
+ team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
253
+ elif team_var1 == 'Full Slate':
254
+ team_var2 = dk_raw.Team.values.tolist()
255
+
256
+ stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
257
+ if stack_var1 == 'Specific Stack Sizes':
258
+ stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
259
+ elif stack_var1 == 'Full Slate':
260
+ stack_var2 = [5, 4, 3, 2, 1, 0]
261
+
262
+ elif site_var1 == 'Fanduel':
263
+ if slate_var1 == 'Showdown':
264
+ FD_seed = init_FD_seed_frames(sport_var1)
265
+ elif slate_var1 == 'Secondary Showdown':
266
+ FD_seed = init_FD_secondary_seed_frames(sport_var1)
267
+ raw_baselines = fd_raw
268
+ column_names = fd_columns
269
+
270
+ team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
271
+ if team_var1 == 'Specific Teams':
272
+ team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
273
+ elif team_var1 == 'Full Slate':
274
+ team_var2 = fd_raw.Team.values.tolist()
275
+
276
+ stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
277
+ if stack_var1 == 'Specific Stack Sizes':
278
+ stack_var2 = st.multiselect('Which stack sizes do you want?', options = [4, 3, 2, 1, 0])
279
+ elif stack_var1 == 'Full Slate':
280
+ stack_var2 = [4, 3, 2, 1, 0]
281
+
282
+
283
+ if st.button("Prepare data export", key='data_export'):
284
+ data_export = st.session_state.working_seed.copy()
285
+ st.download_button(
286
+ label="Export optimals set",
287
+ data=convert_df(data_export),
288
+ file_name='NFL_SD_optimals_export.csv',
289
+ mime='text/csv',
290
+ )
291
+
292
+ with col2:
293
+ if st.button("Load Data", key='load_data'):
294
+ if site_var1 == 'Draftkings':
295
+ if 'working_seed' in st.session_state:
296
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
297
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
298
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
299
+ elif 'working_seed' not in st.session_state:
300
+ st.session_state.working_seed = DK_seed.copy()
301
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
302
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
303
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
304
+
305
+ elif site_var1 == 'Fanduel':
306
+ if 'working_seed' in st.session_state:
307
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
308
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
309
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
310
+ elif 'working_seed' not in st.session_state:
311
+ st.session_state.working_seed = FD_seed.copy()
312
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
313
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
314
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
315
+
316
+ with st.container():
317
+ if 'data_export_display' in st.session_state:
318
+ st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
319
+
320
+ with tab1:
321
+ col1, col2 = st.columns([1, 7])
322
+ with col1:
323
+ if st.button("Load/Reset Data", key='reset2'):
324
+ st.cache_data.clear()
325
+ for key in st.session_state.keys():
326
+ del st.session_state[key]
327
+ dk_raw, fd_raw = init_baselines('NFL')
328
+ sim_sport_var1 = st.radio("What sport are you working with?", ('NBA', 'NFL'), key='sim_sport_var1')
329
+ dk_raw, fd_raw = init_baselines(sim_sport_var1)
330
+ sim_slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown'), key='sim_slate_var1')
331
+ sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
332
+ if sim_site_var1 == 'Draftkings':
333
+ if sim_slate_var1 == 'Showdown':
334
+ DK_seed = init_DK_seed_frames(sim_sport_var1)
335
+ elif sim_slate_var1 == 'Secondary Showdown':
336
+ DK_seed = init_DK_secondary_seed_frames(sim_sport_var1)
337
+ raw_baselines = dk_raw
338
+ column_names = dk_columns
339
+ elif sim_site_var1 == 'Fanduel':
340
+ if sim_slate_var1 == 'Showdown':
341
+ FD_seed = init_FD_seed_frames(sim_sport_var1)
342
+ elif sim_slate_var1 == 'Secondary Showdown':
343
+ FD_seed = init_FD_secondary_seed_frames(sim_sport_var1)
344
+ raw_baselines = fd_raw
345
+ column_names = fd_columns
346
+
347
+ contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
348
+ if contest_var1 == 'Small':
349
+ Contest_Size = 1000
350
+ elif contest_var1 == 'Medium':
351
+ Contest_Size = 5000
352
+ elif contest_var1 == 'Large':
353
+ Contest_Size = 10000
354
+ elif contest_var1 == 'Custom':
355
+ Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
356
+ strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
357
+ if strength_var1 == 'Not Very':
358
+ sharp_split = 500000
359
+ elif strength_var1 == 'Below Average':
360
+ sharp_split = 400000
361
+ elif strength_var1 == 'Average':
362
+ sharp_split = 300000
363
+ elif strength_var1 == 'Above Average':
364
+ sharp_split = 200000
365
+ elif strength_var1 == 'Very':
366
+ sharp_split = 100000
367
+
368
+
369
+ with col2:
370
+ if st.button("Run Contest Sim"):
371
+ if 'working_seed' in st.session_state:
372
+ maps_dict = {
373
+ 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
374
+ 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
375
+ 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
376
+ 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
377
+ 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
378
+ 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
379
+ }
380
+ Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
381
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
382
+
383
+ #st.table(Sim_Winner_Frame)
384
+
385
+ # Initial setup
386
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
387
+ Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
388
+ Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
389
+ Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
390
+
391
+ # Type Casting
392
+ type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
393
+ Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
394
+
395
+ # Sorting
396
+ st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
397
+ st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
398
+
399
+ # Data Copying
400
+ st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
401
+
402
+ # Data Copying
403
+ st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
404
+
405
+ else:
406
+ if sim_site_var1 == 'Draftkings':
407
+ st.session_state.working_seed = DK_seed.copy()
408
+ elif sim_site_var1 == 'Fanduel':
409
+ st.session_state.working_seed = FD_seed.copy()
410
+ maps_dict = {
411
+ 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
412
+ 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
413
+ 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
414
+ 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
415
+ 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
416
+ 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
417
+ }
418
+ Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
419
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
420
+
421
+ #st.table(Sim_Winner_Frame)
422
+
423
+ # Initial setup
424
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
425
+ Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
426
+ Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
427
+ Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
428
+
429
+ # Type Casting
430
+ type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
431
+ Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
432
+
433
+ # Sorting
434
+ st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
435
+ st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
436
+
437
+ # Data Copying
438
+ st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
439
+
440
+ # Data Copying
441
+ st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
442
+ freq_copy = st.session_state.Sim_Winner_Display
443
+
444
+ if sim_site_var1 == 'Draftkings':
445
+ freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:6].values, return_counts=True)),
446
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
447
+ elif sim_site_var1 == 'Fanduel':
448
+ freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:5].values, return_counts=True)),
449
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
450
+ freq_working['Freq'] = freq_working['Freq'].astype(int)
451
+ freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
452
+ if sim_site_var1 == 'Draftkings':
453
+ freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map']) / 1.5
454
+ elif sim_site_var1 == 'Fanduel':
455
+ freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
456
+ freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
457
+ freq_working['Exposure'] = freq_working['Freq']/(1000)
458
+ freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
459
+ freq_working['Team'] = freq_working['Player'].map(maps_dict['Team_map'])
460
+ st.session_state.player_freq = freq_working.copy()
461
+
462
+ if sim_site_var1 == 'Draftkings':
463
+ cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
464
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
465
+ cpt_own_div = 600
466
+ elif sim_site_var1 == 'Fanduel':
467
+ cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
468
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
469
+ cpt_own_div = 500
470
+ cpt_working['Freq'] = cpt_working['Freq'].astype(int)
471
+ cpt_working['Position'] = cpt_working['Player'].map(maps_dict['Pos_map'])
472
+ cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map'])
473
+ cpt_working['Proj Own'] = cpt_working['Player'].map(maps_dict['Own_map']) / cpt_own_div
474
+ cpt_working['Exposure'] = cpt_working['Freq']/(1000)
475
+ cpt_working['Edge'] = cpt_working['Exposure'] - cpt_working['Proj Own']
476
+ cpt_working['Team'] = cpt_working['Player'].map(maps_dict['Team_map'])
477
+ st.session_state.sp_freq = cpt_working.copy()
478
+
479
+ if sim_site_var1 == 'Draftkings':
480
+ flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:6].values, return_counts=True)),
481
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
482
+ cpt_own_div = 600
483
+ elif sim_site_var1 == 'Fanduel':
484
+ flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:5].values, return_counts=True)),
485
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
486
+ cpt_own_div = 500
487
+ flex_working['Freq'] = flex_working['Freq'].astype(int)
488
+ flex_working['Position'] = flex_working['Player'].map(maps_dict['Pos_map'])
489
+ if sim_site_var1 == 'Draftkings':
490
+ flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map']) / 1.5
491
+ elif sim_site_var1 == 'Fanduel':
492
+ flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
493
+ flex_working['Proj Own'] = (flex_working['Player'].map(maps_dict['Own_map']) / 100) - (flex_working['Player'].map(maps_dict['Own_map']) / cpt_own_div)
494
+ flex_working['Exposure'] = flex_working['Freq']/(1000)
495
+ flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
496
+ flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
497
+ st.session_state.flex_freq = flex_working.copy()
498
+
499
+ if sim_site_var1 == 'Draftkings':
500
+ team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,8:9].values, return_counts=True)),
501
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
502
+ elif sim_site_var1 == 'Fanduel':
503
+ team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,7:8].values, return_counts=True)),
504
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
505
+ team_working['Freq'] = team_working['Freq'].astype(int)
506
+ team_working['Exposure'] = team_working['Freq']/(1000)
507
+ st.session_state.team_freq = team_working.copy()
508
+
509
+ if sim_site_var1 == 'Draftkings':
510
+ stack_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,10:11].values, return_counts=True)),
511
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
512
+ elif sim_site_var1 == 'Fanduel':
513
+ stack_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,9:10].values, return_counts=True)),
514
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
515
+ stack_working['Freq'] = stack_working['Freq'].astype(int)
516
+ stack_working['Exposure'] = stack_working['Freq']/(1000)
517
+ st.session_state.stack_freq = stack_working.copy()
518
+
519
+ with st.container():
520
+ if st.button("Reset Sim", key='reset_sim'):
521
+ for key in st.session_state.keys():
522
+ del st.session_state[key]
523
+ if 'player_freq' in st.session_state:
524
+ player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
525
+ if player_split_var2 == 'Specific Players':
526
+ find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
527
+ elif player_split_var2 == 'Full Players':
528
+ find_var2 = st.session_state.player_freq.Player.values.tolist()
529
+
530
+ if player_split_var2 == 'Specific Players':
531
+ st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
532
+ if player_split_var2 == 'Full Players':
533
+ st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
534
+ if 'Sim_Winner_Display' in st.session_state:
535
+ st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
536
+ if 'Sim_Winner_Export' in st.session_state:
537
+ st.download_button(
538
+ label="Export Full Frame",
539
+ data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
540
+ file_name='NFL_SD_consim_export.csv',
541
+ mime='text/csv',
542
+ )
543
+
544
+ with st.container():
545
+ tab1, tab2, tab3, tab4 = st.tabs(['Overall Exposures', 'CPT Exposures', 'FLEX Exposures', 'Team Exposures'])
546
+ with tab1:
547
+ if 'player_freq' in st.session_state:
548
+
549
+ st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
550
+ st.download_button(
551
+ label="Export Exposures",
552
+ data=st.session_state.player_freq.to_csv().encode('utf-8'),
553
+ file_name='player_freq_export.csv',
554
+ mime='text/csv',
555
+ key='overall'
556
+ )
557
+ with tab2:
558
+ if 'sp_freq' in st.session_state:
559
+
560
+ st.dataframe(st.session_state.sp_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
561
+ st.download_button(
562
+ label="Export Exposures",
563
+ data=st.session_state.sp_freq.to_csv().encode('utf-8'),
564
+ file_name='cpt_freq.csv',
565
+ mime='text/csv',
566
+ key='sp'
567
+ )
568
+ with tab3:
569
+ if 'flex_freq' in st.session_state:
570
+
571
+ st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
572
+ st.download_button(
573
+ label="Export Exposures",
574
+ data=st.session_state.flex_freq.to_csv().encode('utf-8'),
575
+ file_name='flex_freq.csv',
576
+ mime='text/csv',
577
+ key='flex'
578
+ )
579
+ with tab4:
580
+ if 'team_freq' in st.session_state:
581
+
582
+ st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
583
+ st.download_button(
584
+ label="Export Exposures",
585
+ data=st.session_state.team_freq.to_csv().encode('utf-8'),
586
+ file_name='team_freq.csv',
587
+ mime='text/csv',
588
+ key='team'
589
+ )